cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091259 Numerator of sigma_3(n)/sigma(n).

Original entry on oeis.org

1, 3, 7, 73, 21, 21, 43, 39, 757, 63, 111, 73, 157, 129, 147, 151, 273, 2271, 343, 219, 301, 333, 507, 273, 15751, 471, 511, 3139, 813, 441, 931, 4161, 777, 819, 903, 55261, 1333, 1029, 1099, 819, 1641, 903, 1807, 8103, 15897, 1521, 2163, 1057, 39331, 47253
Offset: 1

Views

Author

Labos Elemer, Feb 12 2004

Keywords

Crossrefs

Cf. A032766.

Programs

  • Magma
    [Numerator(DivisorSigma(3,n)/DivisorSigma(1,n)): n in [1..50]]; // Vincenzo Librandi, Jan 26 2018
  • Maple
    seq(numer(numtheory:-sigma[3](n)/numtheory:-sigma(n)),n=1..100); # Robert Israel, Jan 25 2018
  • Mathematica
    Array[Numerator[DivisorSigma[3,#]/DivisorSigma[1,#]]&,50] (* Harvey P. Dale, Feb 29 2016 *)
  • PARI
    a(n) = numerator(sigma(n, 3)/sigma(n)); \\ Michel Marcus, Jan 26 2018
    

Formula

a(p) = A002061(p), for prime p. - Robert Israel, Jan 25 2018
Sum_{k=1..n} a(k)/A091258(k) ~ c * n^3, where c = (Pi^2/18)*zeta(3)^2 * Product_{p prime} (1 - 2/p^2 - 1/p^3 + 5/p^5 - 3/p^6) = 0.2382648075... . - Amiram Eldar, Nov 21 2022
Conjecture: a(n) (mod 3) = A353816(n). - Michel Marcus, Aug 11 2024