cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A104219 Triangle read by rows: T(n,k) is number of Schroeder paths of length 2n and having k peaks at height 1, for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 11, 7, 3, 1, 45, 28, 12, 4, 1, 197, 121, 52, 18, 5, 1, 903, 550, 237, 84, 25, 6, 1, 4279, 2591, 1119, 403, 125, 33, 7, 1, 20793, 12536, 5424, 1976, 630, 176, 42, 8, 1, 103049, 61921, 26832, 9860, 3206, 930, 238, 52, 9, 1, 518859, 310954, 134913, 49912
Offset: 0

Views

Author

Emeric Deutsch, Mar 14 2005

Keywords

Comments

A Schroeder path is a lattice path starting from (0,0), ending at a point on the x-axis, consisting only of steps U = (1,1), D = (1,-1) and H = (2,0) and never going below the x-axis. Schroeder paths are counted by the large Schroeder numbers (A006318).
This is an example of a Riordan (lower triangular) matrix. See the Shapiro et al. reference quoted under A053121. More precisely, this ordinary convolution triangle belongs to the Bell subgroup of the Riordan group. In the Shapiro et al. notation this is a Bell matrix (g(x), x*g(x)) with g(x) = (1+x-sqrt(1-6*x+x^2))/(4*x), the o.g.f. of A001003(n), n >= 0.
The g.f. for the row polynomials p(n,x) = Sum_{k=0..n} a(n,k)*x^k is g(y)/(1-x*y*g(y)) = (1-2*x*y+y-sqrt(1-6*y+y^2))/(2*y*(2-x-x*y+x^2*y)).
Triangular array in A011117 transposed. - Philippe Deléham, Mar 16 2005

Examples

			Triangle starts:
  [0]   1;
  [1]   1,   1;
  [2]   3,   2,   1;
  [3]  11,   7,   3,  1;
  [4]  45,  28,  12,  4,  1;
  [5] 197, 121,  52, 18,  5, 1;
  [6] 903, 550, 237, 84, 25, 6, 1;
T(3,1)=7 because we have HH(UD),H(UD)H,(UD)HH,UUDD(UD),(UD)UUDD,(UD)UHD, and
UHD(UD) (the peaks UD at height 1 are shown between parentheses).
From _Philippe Deléham_, Dec 04 2015: (Start)
Production matrix begins:
   1,  1;
   2,  1,  1;
   4,  2,  1, 1;
   8,  4,  2, 1, 1;
  16,  8,  4, 2, 1, 1;
  32, 16,  8, 4, 2, 1, 1;
  64, 32, 16, 8, 4, 2, 1, 1; (End)
		

Crossrefs

Row sums are the large Schroeder numbers (A006318). Column 0 yields the little Schroeder numbers (A001003).
Cf. A104967 (matrix inverse), A091370.

Programs

  • Maple
    G:=2/(1+z+sqrt(1-6*z+z^2)-2*z*t): Gser:=simplify(series(G,z=0,13)): P[0]:=1: for n from 1 to 13 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 11 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form
    # Alternatively:
    T_row := proc(n) local c,f,s;
    c := N -> hypergeom([1-N, N+2], [2], -1);
    f := n -> 1+add(simplify(c(i))*x^i,i=1..n):
    s := j -> coeff(series(f(j)/(1-x*t*f(j)),x,j+1),x,j):
    seq(coeff(s(n),t,j),j=0..n) end:
    seq(T_row(n),n=0..10); # Peter Luschny, Oct 30 2015
  • Mathematica
    T[n_, k_] := (-1)^(n - k) Binomial[n, k] Hypergeometric2F1[k - n, n + 1, k + 2, 2];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Peter Luschny, Jan 08 2018 *)
  • PARI
    {T(n,k)=local(X=x+x*O(x^n),Y=y+y*O(y^k)); polcoeff(polcoeff(2/(1+X+sqrt(1-6*X+X^2)-2*X*Y),n,x),k,y)} \\ Paul D. Hanna, Mar 30 2005
    
  • Sage
    def A104219_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return prec(n-1,k-1)+sum(prec(n,k+i-1) for i in (2..n-k+1))
        return [prec(n, k) for k in (1..n)]
    for n in (1..9): print(A104219_row(n)) # Peter Luschny, Mar 16 2016

Formula

G.f.: 2/(1+z+sqrt(1-6*z+z^2)-2*z*t).
Another version of the triangle T(n, k), 0 <= k <= n, read by rows; given by [0, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] = 1; 0, 1; 0, 1, 1; 0, 3, 2, 1; 0, 11, 7, 3, 1; 0, 45, 28, 12, 4, 1; ... where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 16 2005
a(n, k) = (k+1)*hypergeom([1-n+k, n+2], [2], -1) if n > k; a(n, n)=1; a(n, k)=0 if n < k. - Wolfdieter Lang, Sep 12 2005
a(n, k) = ((k+1)/(n-k))*Sum_{p=1..n-k} binomial(n-k, p)*binomial(n+p, p-1) if n > k; a(n, n)=1; a(n, k)=0 if n < k. Proof with Lagrange's inversion theorem based on eq. y = 1+x*(1-2/y) where y=1/g(x), with g(x) the o.g.f. of A001003(n), n >= 0. Use G(k;y):=1/y^(k+1), k >= 0 to find the coefficients a(n, k) of x^n of G(k;1/g(x)). For this method see also the Larcombe and French paper on Catalan convolutions quoted under A033184. - Wolfdieter Lang, Sep 12 2005
G.f.: 1/(1-x*y-x/(1-x-x/(1-x-x/(1-x-x/(1-x-x/(1-... (continued fraction). - Paul Barry, Feb 01 2009
T((m+1)*n+r-1,m*n+r-1)*r/(m*n+r) = Sum_{k=1..n} (k/n)*T((m+1)*n-k-1,m*n-1)*(r+k,r), n >= m > 1, also T(n-1,m-1) = (m/n)*Sum_{k=1..n-m+1} k*A001003(k-1)*T(n-k-1,m-2), n >= m > 1. - Vladimir Kruchinin, Mar 17 2011
T(n, k) = (-1)^(n - k)*binomial(n, k)*hypergeom([k - n, n + 1], [k + 2], 2). - Peter Luschny, Jan 08 2018

A263917 Riordan array (f(x)^3, f(x)), where 1 + x*f^3(x)/(1 - x*f(x)) = f(x).

Original entry on oeis.org

1, 3, 1, 15, 4, 1, 85, 22, 5, 1, 519, 132, 30, 6, 1, 3330, 837, 190, 39, 7, 1, 22135, 5516, 1250, 260, 49, 8, 1, 151089, 37404, 8461, 1773, 343, 60, 9, 1, 1052805, 259280, 58550, 12324, 2422, 440, 72, 10, 1, 7458236, 1829018, 412375, 87045, 17283, 3214, 552, 85, 11, 1
Offset: 0

Views

Author

Peter Bala, Oct 29 2015

Keywords

Comments

Riordan arrays of the form (f(x)^(m+1), f(x)), where f(x) satisfies 1 + x*f^(m+1)(x)/(1 - x*f(x)) = f(x) include (modulo differences of offset) the Motzkin triangle A091836 (m = -1), the Catalan triangle A033184 (m = 0) and the Schroder triangle A091370 (m = 1). This is the case m = 2. See A263918 for the case m = 3.
The coefficients of the power series solution of the equation 1 + x*f^(m+1)(x)/(1 - x*f(x)) = f(x) appear to be given by [x^0] f(x) = 1 and [x^n] f(x) = 1/n * Sum_{k = 1..n} binomial(n,k)*binomial(n + m*k, k - 1) for n >= 1.
This triangle appears in Novelli et al., Figure 8, p. 24, where a combinatorial interpretation is given in terms of trees.

Examples

			Triangle begins:
       1
       3     1
      15     4     1
      85    22     5    1
     519   132    30    6   1
    3330   837   190   39   7  1
   22135  5516  1250  260  49  8 1
  151089 37404  8461 1773 343 60 9 1
		

Crossrefs

Cf. A108447 (row sums), A118342 (column 0).

Programs

  • Maple
    # For the function TreesByArityOfTheRoot_Row(m, n) see A263918.
    A263917_row := n -> TreesByArityOfTheRoot_Row(2,n):
    seq(A263917_row(n), n=0..9); # Peter Luschny, Oct 31 2015
  • Mathematica
    rows = 9;
    f[] = 1; Do[f[x] = 1 + x*f[x]*(f[x]^2 + f[x] - 1) + O[x]^(rows+1) // Normal, {rows+1}];
    coes = CoefficientList[f[x]^3/(1 - x*t*f[x]) + O[x]^(rows+1), x];
    row[n_] := CoefficientList[coes[[n+1]], t];
    Table[row[n], {n, 0, rows}] // Flatten (* Jean-François Alcover, Jul 19 2018 *)

Formula

O.g.f. f^3(x)/(1 - x*t*f(x)), where f(x) = 1 + x + 4*x^2 + 20*x^3 + 113*x^4 + ... satisfies 1 + x*f^3(x)/(1 - x*f(x)) = f(x);
f(x) is the o.g.f. for A108447.
First column o.g.f f(x)^3 is the o.g.f. for A118342.
f(x) - 1 is the g.f. for the row sums of the array.

A263918 Riordan array (f(x)^4, f(x)), where 1 + x*f^4(x)/(1 - x*f(x)) = f(x).

Original entry on oeis.org

1, 4, 1, 26, 5, 1, 192, 35, 6, 1, 1531, 270, 45, 7, 1, 12848, 2215, 362, 56, 8, 1, 111818, 18961, 3054, 461, 68, 9, 1, 1000068, 167455, 26670, 4067, 592, 81, 10, 1, 9135745, 1514590, 239081, 36232, 5274, 732, 95, 11, 1
Offset: 0

Views

Author

Peter Bala, Oct 29 2015

Keywords

Comments

Riordan arrays of the form (f(x)^(m+1), f(x)), where f(x) satisfies 1 + x*f^(m+1)(x)/(1 - x*f(x)) = f(x) include (modulo differences of offset) the Motzkin triangle A091836 (m = -1), the Catalan triangle A033184 (m = 0) and the Schroder triangle A091370 (m = 1). This is the case m = 3. See A263917 for the case m = 2.
The coefficients of the power series solution of the equation 1 + x*f^(m+1)(x)/(1 - x*f(x)) = f(x) appear to be given by [x^0] f(x) = 1 and [x^n] f(x) = 1/n * Sum_{k = 1..n} binomial(n,k)*binomial(n + m*k, k - 1) for n >= 1.
This triangle appears in Novelli et al., Figure 8, p. 24, where a combinatorial interpretation is given in terms of trees.

Examples

			Triangle begins
1,
4, 1,
26, 5, 1,
192, 35, 6, 1,
1531, 270, 45, 7, 1,
12848, 2215, 362, 56, 8, 1,
111818, 18961, 3054, 461, 68, 9, 1,
...
f(x) = 1 + x + 5*x^2 + 32*x^3 + 234*x^4 + 1854*x^5 + 15490*x^6 + 134380*x^7 + 1198944*x^8 + 10931761*x^9 + 101412677*x^10 + 954155059*x^11 + 9083120975*x^12 + ...
f(x)^4 = 1 + 4*x + 26*x^2 + 192*x^3 + 1531*x^4 + 12848*x^5 + 111818*x^6 + 1000068*x^7 + 9135745*x^8 + 84880196*x^9 + 799602464*x^10 + 7619763776*x^11 + 73322247876*x^12 + ...
		

Crossrefs

Programs

  • Maple
    TreesByArityOfTheRoot_Row := proc(m, row) local c,f,s;
    c := N -> hypergeom([1-N, seq((N+j)/m, j=m+1..2*m)],
    [2, seq((N+j)/(m-1), j=m+1..2*m-1)], -m^m/(m-1)^(m-1)):
    f := n -> 1 + add(simplify(c(i))*x^i,i=1..n):
    s := j -> coeff(series(f(j)^(m+1)/(1-x*t*f(j)),x,j+1),x,j):
    seq(coeff(s(row),t,j),j=0..row) end:
    A263918_row := n -> TreesByArityOfTheRoot_Row(3, n):
    seq(A263918_row(n), n=0..8); # Peter Luschny, Oct 31 2015
  • Mathematica
    nmax = 9; For[f = 1; n = 1, n <= nmax, n++, f = 1 + x*f^4/(1 - x*f) + O[x]^n // Normal];
    g = f^4/(1 - x*t*f) + O[x]^nmax // Normal;
    row[n_] := CoefficientList[Coefficient[g, x, n], t];
    Table[row[n], {n, 0, nmax}] // Flatten (* Jean-François Alcover, Dec 03 2017 *)

Formula

O.g.f. f^4(x)/(1 - x*t*f(x)) = 1 + (4 + t)*x + (26 + 5*t + t^2)*x^2 + ..., where f(x) = 1 + x + 5*x^2 + 32*x^3 + 234*x^4 + ... satisfies 1 + x*f^4(x)/(1 - x*f(x)) = f(x);
f(x) - 1 is the g.f. for the row sums of the array.
f(x)^4 is the g.f. for the first column of the array.
Showing 1-3 of 3 results.