A091513 Numbers k such that (2^k + 1)^2 - 2 = 4^k + 2^(k+1) - 1 is prime.
0, 1, 2, 3, 5, 8, 9, 12, 15, 17, 18, 21, 23, 27, 32, 51, 65, 87, 180, 242, 467, 491, 501, 507, 555, 591, 680, 800, 1070, 1650, 2813, 3281, 4217, 5153, 6287, 6365, 10088, 10367, 37035, 45873, 69312, 102435, 106380, 108888, 110615, 281621, 369581, 376050, 442052, 621443, 661478
Offset: 1
Links
- S. Harvey, Carol and Kynea Primes
- M. Rodenkirch, Carol and Kynea Prime Search
- Eric Weisstein's World of Mathematics, Integer Sequence Primes
- Eric Weisstein's World of Mathematics, Near-Square Prime
Crossrefs
Programs
-
Magma
[n: n in [0..500] | IsPrime((2^n+1)^2-2)]; // Vincenzo Librandi, Feb 19 2016
-
Mathematica
Flatten[Position[Table[(2^n + 1)^2 - 2, {n, 0, 10^3}], ?PrimeQ] - 1] (* _Eric W. Weisstein, Feb 10 2016 *) Select[Range[0, 5000], PrimeQ[(2^# + 1)^2 - 2] & ] (* Vincenzo Librandi, Feb 19 2016 *)
-
PARI
is(n)=ispseudoprime((2^n+1)^2-2) \\ Charles R Greathouse IV, Feb 19 2016
Formula
A093069(n) = (2^a(n) + 1)^2 - 2.
Extensions
a(41) from Eric W. Weisstein, Feb 27 2004
a(42) to a(44) from Eric W. Weisstein, Jun 05 2004
Edited by Ray Chandler, Nov 15 2004
a(46) from Cletus Emmanuel (cemmanu(AT)yahoo.com), Oct 07 2005
a(47)-a(48) from Eric W. Weisstein, Feb 10 2016 (computed by Mark Rodenkirch)
a(49)-a(50) from Eric W. Weisstein, Jun 08 2016 (computed by Mark Rodenkirch)
a(51) from Eric W. Weisstein, Jun 19 2016 (computed by Mark Rodenkirch)