A091570 Sum of odd proper divisors of n. Sum of the odd divisors of n that are less than n.
0, 1, 1, 1, 1, 4, 1, 1, 4, 6, 1, 4, 1, 8, 9, 1, 1, 13, 1, 6, 11, 12, 1, 4, 6, 14, 13, 8, 1, 24, 1, 1, 15, 18, 13, 13, 1, 20, 17, 6, 1, 32, 1, 12, 33, 24, 1, 4, 8, 31, 21, 14, 1, 40, 17, 8, 23, 30, 1, 24, 1, 32, 41, 1, 19, 48, 1, 18, 27, 48, 1, 13, 1, 38, 49
Offset: 1
Examples
The sum of odd divisors of 9 that are less than 9 is 1 + 3 = 4.
Links
Crossrefs
Programs
-
Mathematica
f[2, e_] := 1; f[p_, e_] := (p^(e+1)-1)/(p-1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - If[OddQ[n], n, 0]; Array[a, 75] (* Amiram Eldar, Oct 11 2023 *)
-
PARI
a(n) = sumdiv(n , d, (d%2) * (d
Michel Marcus, Jan 14 2014
Formula
G.f.: Sum_{k>=1} (2*k-1) * x^(4*k-2) / (1 - x^(2*k-1)). - Ilya Gutkovskiy, Apr 13 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(2)-1)/4 = 0.1612335167... . - Amiram Eldar, Oct 11 2023