cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091570 Sum of odd proper divisors of n. Sum of the odd divisors of n that are less than n.

Original entry on oeis.org

0, 1, 1, 1, 1, 4, 1, 1, 4, 6, 1, 4, 1, 8, 9, 1, 1, 13, 1, 6, 11, 12, 1, 4, 6, 14, 13, 8, 1, 24, 1, 1, 15, 18, 13, 13, 1, 20, 17, 6, 1, 32, 1, 12, 33, 24, 1, 4, 8, 31, 21, 14, 1, 40, 17, 8, 23, 30, 1, 24, 1, 32, 41, 1, 19, 48, 1, 18, 27, 48, 1, 13, 1, 38, 49
Offset: 1

Views

Author

Mohammad K. Azarian, Mar 04 2004

Keywords

Examples

			The sum of odd divisors of 9 that are less than 9 is 1 + 3 = 4.
		

Crossrefs

Sum of the k-th powers of the odd proper divisors of n for k=0..10: A091954 (k=0), this sequence (k=1), A351647 (k=2), A352031 (k=3), A352032 (k=4), A352033 (k=5), A352034 (k=6), A352035 (k=7), A352036 (k=8), A352037 (k=9), A352038 (k=10).

Programs

  • Mathematica
    f[2, e_] := 1; f[p_, e_] := (p^(e+1)-1)/(p-1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - If[OddQ[n], n, 0]; Array[a, 75] (* Amiram Eldar, Oct 11 2023 *)
  • PARI
    a(n) = sumdiv(n , d, (d%2) * (dMichel Marcus, Jan 14 2014

Formula

If n is odd, a(n) = A000593(n) - n; if n is even, a(n) = A000593(n). - Michel Marcus, Jan 14 2014
G.f.: Sum_{k>=1} (2*k-1) * x^(4*k-2) / (1 - x^(2*k-1)). - Ilya Gutkovskiy, Apr 13 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(2)-1)/4 = 0.1612335167... . - Amiram Eldar, Oct 11 2023