cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091592 Numbers n such that there are no twin primes between n^2 and (n+1)^2.

Original entry on oeis.org

1, 9, 19, 26, 27, 30, 34, 39, 49, 53, 77, 122
Offset: 1

Views

Author

Hugo Pfoertner, Jan 25 2004

Keywords

Comments

Numbers n such that there is no pair of twin primes P, P+2 with n^2 < P < P+2 < n^2+2*n.
The first 7 terms of this sequence were given by Ernst Jung in a discussion in the Newsgroup de.sci.mathematik entitled "Primzahlen zwischen (2x-1)^2 und (2x+1)^2" (primes between ...and...) with other significant contributions from Hermann Kremer and Rainer Rosenthal. It is conjectured that there are no further terms beyond a(12)=122. This has been tested to 50000 by Robert G. Wilson v.
Tested up to 10^7 and found no such numbers. - Arkadiusz Wesolowski, Jul 11 2011

Examples

			9 is a term because no twin primes are found in the interval [9^2,10^2].
		

Crossrefs

Programs

  • Maple
    isA091592 := proc(n) local p; p := nextprime(n^2) ; q := nextprime(p) ; while q < n^2+2*n do if q-p = 2 then RETURN(false) ; fi; p :=q ; q := nextprime(p) ; od: RETURN(true) ; end: for n from 1 do if isA091592(n) then printf("%d ",n) ; fi; od: # R. J. Mathar, Aug 26 2008
  • Mathematica
    fQ[n_] := StringCount[ ToString@ PrimeQ[ Range[n^2, (n + 1)^2]], "True, False, True"] == 0; lst = {}; Do[ If[ fQ@n, AppendTo[lst, n]], {n, 25000}]

Extensions

Edited by N. J. A. Sloane, Aug 31 2008 at the suggestion of Pierre CAMI