A091627 Number of ordered integer pairs (b,c) with 1 <= b,c <= n such that both roots of x^2+bx+c=0 are integers.
0, 0, 1, 2, 4, 5, 7, 8, 10, 12, 14, 15, 18, 19, 21, 23, 26, 27, 30, 31, 34, 36, 38, 39, 43, 45, 47, 49, 52, 53, 57, 58, 61, 63, 65, 67, 72, 73, 75, 77, 81, 82, 86, 87, 90, 93, 95, 96, 101, 103, 106, 108, 111, 112, 116, 118, 122, 124, 126, 127, 133, 134, 136, 139, 143
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Quadratic Equation
Programs
-
Mathematica
Accumulate[ Join[{0, 0}, Table[ Ceiling[ DivisorSigma[0, n]/2], {n, 2, 64}]]] (* Jean-François Alcover, Oct 23 2012, after Vladeta Jovovic *)
-
PARI
a(n) = sum(i=1, n, sum(j=i, n-i, i*j<=n)); \\ Seiichi Manyama, Sep 04 2021
-
PARI
N=66; x='x+O('x^N); concat([0, 0], Vec((-x+sum(k=1, sqrtint(N), x^k^2/(1-x^k)))/(1-x))) \\ Seiichi Manyama, Sep 04 2021
-
Python
from math import isqrt def A091627(n): m = isqrt(n) return 0 if n == 0 else sum(n//k for k in range(1, m+1))-m*(m-1)//2-1 # Chai Wah Wu, Oct 07 2021
Formula
a(n) = A091626(n) - n - 1. a(n) = a(n-1) + ceiling(tau(n)/2), n>1. Partial sums of A038548. - Vladeta Jovovic, Jun 12 2004
G.f.: (1/(1 - x)) * (-x + Sum_{k>=1} x^(k^2)/(1 - x^k)). - Seiichi Manyama, Sep 04 2021
Comments