cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091627 Number of ordered integer pairs (b,c) with 1 <= b,c <= n such that both roots of x^2+bx+c=0 are integers.

Original entry on oeis.org

0, 0, 1, 2, 4, 5, 7, 8, 10, 12, 14, 15, 18, 19, 21, 23, 26, 27, 30, 31, 34, 36, 38, 39, 43, 45, 47, 49, 52, 53, 57, 58, 61, 63, 65, 67, 72, 73, 75, 77, 81, 82, 86, 87, 90, 93, 95, 96, 101, 103, 106, 108, 111, 112, 116, 118, 122, 124, 126, 127, 133, 134, 136, 139, 143
Offset: 0

Views

Author

Eric W. Weisstein, Jan 24 2004

Keywords

Comments

Also number of ordered pairs of positive integers (i, j) such that i+j <= n and i*j <= n. - Seiichi Manyama, Sep 04 2021

Crossrefs

Programs

  • Mathematica
    Accumulate[ Join[{0, 0}, Table[ Ceiling[ DivisorSigma[0, n]/2], {n, 2, 64}]]]  (* Jean-François Alcover, Oct 23 2012, after Vladeta Jovovic *)
  • PARI
    a(n) = sum(i=1, n, sum(j=i, n-i, i*j<=n)); \\ Seiichi Manyama, Sep 04 2021
    
  • PARI
    N=66; x='x+O('x^N); concat([0, 0], Vec((-x+sum(k=1, sqrtint(N), x^k^2/(1-x^k)))/(1-x))) \\ Seiichi Manyama, Sep 04 2021
    
  • Python
    from math import isqrt
    def A091627(n):
        m = isqrt(n)
        return 0 if n == 0 else sum(n//k for k in range(1, m+1))-m*(m-1)//2-1 # Chai Wah Wu, Oct 07 2021

Formula

a(n) = A091626(n) - n - 1. a(n) = a(n-1) + ceiling(tau(n)/2), n>1. Partial sums of A038548. - Vladeta Jovovic, Jun 12 2004
G.f.: (1/(1 - x)) * (-x + Sum_{k>=1} x^(k^2)/(1 - x^k)). - Seiichi Manyama, Sep 04 2021