cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091648 Decimal expansion of arccosh(sqrt(2)), the inflection point of sech(x).

Original entry on oeis.org

8, 8, 1, 3, 7, 3, 5, 8, 7, 0, 1, 9, 5, 4, 3, 0, 2, 5, 2, 3, 2, 6, 0, 9, 3, 2, 4, 9, 7, 9, 7, 9, 2, 3, 0, 9, 0, 2, 8, 1, 6, 0, 3, 2, 8, 2, 6, 1, 6, 3, 5, 4, 1, 0, 7, 5, 3, 2, 9, 5, 6, 0, 8, 6, 5, 3, 3, 7, 7, 1, 8, 4, 2, 2, 2, 0, 2, 6, 0, 8, 7, 8, 3, 3, 7, 0, 6, 8, 9, 1, 9, 1, 0, 2, 5, 6, 0, 4, 2, 8, 5, 6
Offset: 0

Views

Author

Eric W. Weisstein, Jan 24 2004

Keywords

Comments

Asymptotic growth constant in the exponent for the number of spanning trees on the 2 X infinity strip on the square lattice. - R. J. Mathar, May 14 2006
Arccosh(sqrt(2)) = (1/2)*log((sqrt(2)+1)/(sqrt(2)-1)) = log(tan(3*Pi/8)) = int(1/cos(x),x=0..Pi/4). Therefore, in Gerardus Mercator's (conformal) map this is the value of the ordinate y/R (R radius of the spherical earth) for latitude phi = 45 degrees north, or Pi/4. See, e.g., the Eli Maor reference, eqs. (5) and (6). This is the latitude of, e.g., the Mission Point Lighthouse, Michigan, U.S.A. - Wolfdieter Lang, Mar 05 2013
Decimal expansion of the arclength on the hyperbola y^2 - x^2 = 1 from (0,0) to (1,sqrt(2)). - Clark Kimberling, Jul 04 2020

Examples

			0.8813735870195430252326093249797923090281603282616...
		

References

  • L. B. W. Jolley, Summation of Series, Dover (1961), Eq. (85) page 16-17.
  • E. Maor, Trigonometric Delights, Princeton University Press, NJ, 1998, chapter 13, A Mapmaker's Paradise, pp. 163-180.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 30, equation 30:10:4 at page 283.

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[1 + Sqrt[2]], 10, 100][[1]] (* Alonso del Arte, Aug 11 2011 *)
  • Maxima
    fpprec : 100$ ev(bfloat(log(1 + sqrt(2)))); /* Martin Ettl, Oct 17 2012 */
    
  • PARI
    asinh(1) \\ Michel Marcus, Oct 19 2014

Formula

Equals log(1 + sqrt(2)). - Jonathan Sondow, Mar 15 2005
Equals (1/2)*log(3+2*sqrt(2)) = A244920/2. - R. J. Mathar, May 14 2006
Equals Sum_{n>=1, n odd} binomial(2*n,n)/(n*4^n) [see Lehmer link]. - R. J. Mathar, Mar 04 2009
Equals arcsinh(1), since arcsinh(x) = log(x+sqrt(x^2+1)). - Stanislav Sykora, Nov 01 2013
Equals asin(i)/i. - L. Edson Jeffery, Oct 19 2014
Equals (Pi/4) * 3F2(1/4, 1/2, 3/4; 1, 3/2; 1). - Jean-François Alcover, Apr 23 2015
Equals arctanh(sqrt(2)/2). - Amiram Eldar, Apr 22 2022
Equals lim_{n->oo} Sum_{k=1..n} 1/sqrt(n^2+k^2). - Amiram Eldar, May 19 2022
Equals Sum_{n >= 1} 1/(n*P(n, sqrt(2))*P(n-1, sqrt(2))), where P(n, x) denotes the n-th Legendre polynomial. The first twenty terms of the series gives the approximate value 0.88137358701954(24...), correct to 14 decimal places. - Peter Bala, Mar 16 2024
Equals 2F1(1/2,1/2;3/2;-1) [Krupnikov]. - R. J. Mathar, May 13 2024
Equals Integral_{x=0..1} (x^sqrt(2) - 1)/log(x) dx. - Kritsada Moomuang, Jun 06 2025