A091648 Decimal expansion of arccosh(sqrt(2)), the inflection point of sech(x).
8, 8, 1, 3, 7, 3, 5, 8, 7, 0, 1, 9, 5, 4, 3, 0, 2, 5, 2, 3, 2, 6, 0, 9, 3, 2, 4, 9, 7, 9, 7, 9, 2, 3, 0, 9, 0, 2, 8, 1, 6, 0, 3, 2, 8, 2, 6, 1, 6, 3, 5, 4, 1, 0, 7, 5, 3, 2, 9, 5, 6, 0, 8, 6, 5, 3, 3, 7, 7, 1, 8, 4, 2, 2, 2, 0, 2, 6, 0, 8, 7, 8, 3, 3, 7, 0, 6, 8, 9, 1, 9, 1, 0, 2, 5, 6, 0, 4, 2, 8, 5, 6
Offset: 0
Examples
0.8813735870195430252326093249797923090281603282616...
References
- L. B. W. Jolley, Summation of Series, Dover (1961), Eq. (85) page 16-17.
- E. Maor, Trigonometric Delights, Princeton University Press, NJ, 1998, chapter 13, A Mapmaker's Paradise, pp. 163-180.
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 30, equation 30:10:4 at page 283.
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- E. D. Krupnikov, K. S. Kölbig, Some special cases of the generalized hypergeometric function (q+1)Fq, J. Comp. Appl. Math. 78 (1997) 79-95.
- D. H. Lehmer, Interesting Series Involving the Central Binomial Coefficient, Am. Math. Monthly 92 (1985) 449.
- Michael I. Shamos, A catalog of the real numbers, (2007). See pp. 614-615.
- R. Shrock and F. Y. Wu, Spanning trees on graphs and lattices in d dimensions, J Phys A: Math Gen 33 (2000) 3881-3902.
- Eric Weisstein's World of Mathematics, Hyperbolic Secant.
- Eric Weisstein's World of Mathematics, Universal Parabolic Constant.
- Index entries for transcendental numbers.
Programs
-
Mathematica
RealDigits[Log[1 + Sqrt[2]], 10, 100][[1]] (* Alonso del Arte, Aug 11 2011 *)
-
Maxima
fpprec : 100$ ev(bfloat(log(1 + sqrt(2)))); /* Martin Ettl, Oct 17 2012 */
-
PARI
asinh(1) \\ Michel Marcus, Oct 19 2014
Formula
Equals log(1 + sqrt(2)). - Jonathan Sondow, Mar 15 2005
Equals (1/2)*log(3+2*sqrt(2)) = A244920/2. - R. J. Mathar, May 14 2006
Equals Sum_{n>=1, n odd} binomial(2*n,n)/(n*4^n) [see Lehmer link]. - R. J. Mathar, Mar 04 2009
Equals arcsinh(1), since arcsinh(x) = log(x+sqrt(x^2+1)). - Stanislav Sykora, Nov 01 2013
Equals asin(i)/i. - L. Edson Jeffery, Oct 19 2014
Equals (Pi/4) * 3F2(1/4, 1/2, 3/4; 1, 3/2; 1). - Jean-François Alcover, Apr 23 2015
Equals arctanh(sqrt(2)/2). - Amiram Eldar, Apr 22 2022
Equals lim_{n->oo} Sum_{k=1..n} 1/sqrt(n^2+k^2). - Amiram Eldar, May 19 2022
Equals Sum_{n >= 1} 1/(n*P(n, sqrt(2))*P(n-1, sqrt(2))), where P(n, x) denotes the n-th Legendre polynomial. The first twenty terms of the series gives the approximate value 0.88137358701954(24...), correct to 14 decimal places. - Peter Bala, Mar 16 2024
Equals 2F1(1/2,1/2;3/2;-1) [Krupnikov]. - R. J. Mathar, May 13 2024
Equals Integral_{x=0..1} (x^sqrt(2) - 1)/log(x) dx. - Kritsada Moomuang, Jun 06 2025
Comments