A014176 Decimal expansion of the silver mean, 1+sqrt(2).
2, 4, 1, 4, 2, 1, 3, 5, 6, 2, 3, 7, 3, 0, 9, 5, 0, 4, 8, 8, 0, 1, 6, 8, 8, 7, 2, 4, 2, 0, 9, 6, 9, 8, 0, 7, 8, 5, 6, 9, 6, 7, 1, 8, 7, 5, 3, 7, 6, 9, 4, 8, 0, 7, 3, 1, 7, 6, 6, 7, 9, 7, 3, 7, 9, 9, 0, 7, 3, 2, 4, 7, 8, 4, 6, 2, 1, 0, 7, 0, 3, 8, 8, 5, 0, 3, 8, 7, 5, 3, 4, 3, 2, 7, 6, 4, 1, 5, 7
Offset: 1
Examples
2.414213562373095...
References
- B. C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag, p. 140, Entry 25.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Nicholas R. Beaton, Mireille Bousquet-Mélou, Jan de Gier, Hugo Duminil-Copin, and Anthony J. Guttmann, The critical fugacity for surface adsorption of self-avoiding walks on the honeycomb lattice is 1+sqrt(2), arXiv:1109.0358 [math-ph], 2011-2013.
- Eric Weisstein's World of Mathematics, Silver Ratio
- Wikipedia, Exact trigonometric constants
- Wikipedia, Metallic mean
- Wikipedia, Silver ratio
- Index entries for algebraic numbers, degree 2
Crossrefs
Programs
-
Maple
Digits:=100: evalf(1+sqrt(2)); # Wesley Ivan Hurt, Apr 09 2016
-
Mathematica
RealDigits[1 + Sqrt@ 2, 10, 111] (* Or *) RealDigits[Exp@ ArcSinh@ 1, 10, 111][[1]] (* Robert G. Wilson v, Aug 17 2011 *) Circs[n_] := With[{r = Sin[Pi/n]/(1 - Sin[Pi/n])}, Graphics[Append[ Table[Circle[(r + 1) {Sin[2 Pi k/n], Cos[2 Pi k/n]}, r], {k, n}], {Blue, Circle[{0, 0}, 1]}]]] Circs[4] (* Charles R Greathouse IV, Jan 14 2013 *)
-
PARI
1+sqrt(2) \\ Charles R Greathouse IV, Jan 14 2013
Formula
Equals cot(Pi/8) = tan(Pi*3/8). - Bruno Berselli, Dec 13 2012, and M. F. Hasler, Jul 08 2016
Silver mean = 2 + Sum_{n>=0} (-1)^n/(P(n-1)*P(n)), where P(n) is the n-th Pell number (A000129). - Vladimir Shevelev, Feb 22 2013
Equals exp(arcsinh(1)) which is exp(A091648). - Stanislav Sykora, Nov 01 2013
Limit_{n->oo} exp(asinh(cos(Pi/n))) = sqrt(2) + 1. - Geoffrey Caveney, Apr 23 2014
exp(asinh(cos(Pi/2 - log(sqrt(2)+1)*i))) = exp(asinh(sin(log(sqrt(2)+1)*i))) = i. - Geoffrey Caveney, Apr 23 2014
Equals Product_{k>=1} A047621(k) / A047522(k) = (3/1) * (5/7) * (11/9) * (13/15) * (19/17) * (21/23) * ... . - Dimitris Valianatos, Mar 27 2019
From Wolfdieter Lang, Nov 10 2023:(Start)
Equals lim_{n->oo} S(n+1, 2*sqrt(2))/S(n, 2*sqrt(2)), with the Chebyshev S(n,x) polynomial (see A049310). (End)
From Peter Bala, Mar 24 2024: (Start)
An infinite family of continued fraction expansions for this constant can be obtained from Berndt, Entry 25, by setting n = 1/2 and x = 8*k + 6 for k >= 0.
For example, taking k = 0 and k = 1 yields
sqrt(2) + 1 = 15/(6 + (1*3)/(12 + (5*7)/(12 + (9*11)/(12 + (13*15)/(12 + ... + (4*n + 1)*(4*n + 3)/(12 + ... )))))) and
sqrt(2) + 1 = (715/21) * 1/(14 + (1*3)/(28 + (5*7)/(28 + (9*11)/(28 + (13*15)/(28 + ... + (4*n + 1)*(4*n + 3)/(28 + ... )))))). (End)
Comments