cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091703 Count, setting 5n to zero.

Original entry on oeis.org

0, 1, 2, 3, 4, 0, 6, 7, 8, 9, 0, 11, 12, 13, 14, 0, 16, 17, 18, 19, 0, 21, 22, 23, 24, 0, 26, 27, 28, 29, 0, 31, 32, 33, 34, 0, 36, 37, 38, 39, 0, 41, 42, 43, 44, 0, 46, 47, 48, 49, 0, 51, 52, 53, 54, 0, 56, 57, 58, 59, 0, 61, 62, 63, 64, 0, 66, 67, 68, 69, 0, 71, 72, 73, 74, 0, 76, 77
Offset: 0

Views

Author

Paul Barry, Jan 30 2004

Keywords

Crossrefs

Programs

  • Magma
    [(n mod 5 eq 0) select 0 else n: n in [0..80]]; // G. C. Greubel, Feb 28 2019
    
  • Mathematica
    Table[If[Divisible[n,5],0,n],{n,0,80}] (* Harvey P. Dale, Apr 26 2018 *)
  • PARI
    a(n) = if (n % 5, n, 0); \\ Michel Marcus, Feb 28 2019
    
  • Sage
    [n if not n % 5==0 else 0 for n in range(80)] # G. C. Greubel, Feb 28 2019

Formula

a(n) = Product_{k=0..4} Sum_{j=1..n} e^(2*Pi*ijk/5), i=sqrt(-1).
a(n) = cos(4*Pi*n/5 + 2*Pi/5)*(n*cos(2*Pi*n/5 + Pi/5)/5 + n*sqrt(1/5 - 2*sqrt(5)/25)*sin(2*Pi*n/5 + Pi/5) + n*(1/5 - sqrt(5)/5)) + sin(4*Pi*n/5 + 2*Pi/5)*(n*sqrt(2*sqrt(5)/25 + 1/5)*cos(2*Pi*n/5 + Pi/5) + sqrt(5)*n*sin(2*Pi*n/5 + Pi/5)/5 - n*sqrt(2*sqrt(5)/25 + 2/5)) - n*(sqrt(5)/5 + 1/5)*cos(2*Pi*n/5 + Pi/5) - n*sqrt(2/5 - 2*sqrt(5)/25)*sin(2*Pi*n/5 + Pi/5) + 4*n/5.
a(n) = n^5 mod (5*n). - Paul Barry, Apr 13 2005
Multiplicative with a(5^e) = 0, a(p^e) = p^e otherwise. - Mitch Harris, Jun 09 2005
From R. J. Mathar, Feb 04 2009: (Start)
a(n) = 2*a(n-5) - a(n-10).
G.f.: x*(1 + 2*x + 3*x^2 + 4*x^3 + 4*x^5 + 3*x^6 + 2*x^7 + x^8)/(1-x^5)^2.
a(n) = |A080891(n)|*A001477(n). (End)
From R. J. Mathar, Apr 14 2011: (Start)
a(n) = n*A011558(n).
Dirichlet g.f.: (1-5^(1-s))*zeta(s-1). (End)
Sum_{k=1..n} a(k) ~ (2/5) * n^2. - Amiram Eldar, Nov 20 2022