cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A362484 Irregular table read by rows in which the n-th row consists of all the numbers m such that iphi(m) = n, where iphi is the infinitary totient function A091732.

Original entry on oeis.org

1, 2, 3, 6, 4, 8, 5, 10, 7, 12, 14, 24, 9, 15, 18, 30, 11, 22, 13, 20, 21, 26, 40, 42, 16, 32, 17, 27, 34, 54, 19, 28, 38, 56, 33, 66, 23, 46, 25, 35, 36, 39, 50, 60, 70, 72, 78, 120, 29, 58, 31, 44, 48, 62, 88, 96, 45, 51, 90, 102, 37, 52, 57, 74, 84, 104, 114, 168
Offset: 1

Views

Author

Amiram Eldar, Apr 22 2023

Keywords

Examples

			The table begins:
  n   n-th row
  --  -----------------------
   1  1, 2;
   2  3, 6;
   3  4, 8;
   4  5, 10;
   5
   6  7, 12, 14, 24;
   7
   8  9, 15, 18, 30;
   9
  10  11, 22;
  11
  12  13, 20, 21, 26, 40, 42;
		

Crossrefs

Cf. A091732, A162247, A362485 (row lengths).
Similar sequences: A032447, A361966, A362213, A362180.

Programs

  • Mathematica
    powQ[n_] := n == 2^IntegerExponent[n, 2]; powfQ[n_] := Length[fact = FactorInteger[n]] == 1 && powQ[fact[[1, 2]]];
    invIPhi[n_] := Module[{fct = f[n], sol}, sol = Times @@@ (1 + Select[fct, UnsameQ @@ # && AllTrue[# + 1, powfQ] &]); Sort@ Join[sol, 2*sol]]; invIPhi[1] = {1, 2};
    Table[invIPhi[n], {n, 1, 36}] // Flatten (* using the function f by T. D. Noe at A162247 *)

A326403 Numbers k such that iphi(k) = iphi(k+1), where iphi(k) is an infinitary analog to the Euler totient function (A091732).

Original entry on oeis.org

1, 20, 35, 143, 194, 208, 740, 1220, 1299, 1419, 1803, 1892, 3705, 3716, 3843, 5186, 5635, 7868, 10659, 13634, 13905, 17948, 18507, 18914, 18980, 21007, 25388, 25545, 30380, 31599, 32304, 34595, 37820, 47067, 70394, 73059, 78064, 87856, 94874, 105908, 116963
Offset: 1

Views

Author

Amiram Eldar, Sep 14 2019

Keywords

Examples

			20 is in the sequence since iphi(20) = iphi(21) = 12.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], ?(# == 1 &)])); a[1] = 1; a[n] := Times @@ (Flatten @(f @@@ FactorInteger[n]) - 1); a1 = 1; s = {}; Do[a2 = a[n]; If[a1 == a2, AppendTo[s, n - 1]]; a1 = a2, {n, 2, 10^5}]; s

A362485 Number of numbers k such that iphi(k) = n, where iphi is the infinitary totient function A091732.

Original entry on oeis.org

2, 2, 2, 2, 0, 4, 0, 4, 0, 2, 0, 6, 0, 0, 2, 4, 0, 4, 0, 2, 0, 2, 0, 10, 0, 0, 0, 2, 0, 6, 0, 4, 0, 0, 0, 8, 0, 0, 0, 4, 0, 2, 0, 2, 2, 2, 0, 14, 0, 0, 0, 2, 0, 2, 0, 2, 0, 2, 0, 10, 0, 0, 0, 4, 0, 4, 0, 0, 0, 2, 0, 14, 0, 0, 0, 0, 0, 2, 0, 8, 0, 2, 0, 4, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Apr 22 2023

Keywords

Comments

a(n) is even for all n, because if k is a solution to iphi(k) = n, and A007814(k) is even, then 2*k is also a solution, i.e., iphi(2*k) = n.

Crossrefs

Row lengths of A362484.
Cf. A007814, A091732, A362486 (positions of 0's), A362487 (indices of records).
Similar sequences: A014197, A063740, A361967, A362181.

Programs

  • Mathematica
    a[n_] := Length[invIPhi[n]]; Array[a, 100] (* using the function invIPhi from A362484 *)

Formula

a(A362486(n)) = 0.

A330273 Infinitary perfect totient numbers: numbers that equal to the sum of their iterated infinitary totient function (A091732).

Original entry on oeis.org

3, 10, 21, 44, 93, 118, 170, 320, 548, 3596, 3620, 4772, 5564, 18260, 33051, 256425, 403700, 1071129, 1790160, 2318180, 3968852, 4027375, 10001319, 11270012, 12048740, 13358121, 31741593, 46271673, 56149161, 4344134553
Offset: 1

Views

Author

Amiram Eldar, Dec 13 2019

Keywords

Comments

The infinitary version of A082897 (perfect totient numbers), in which the infinitary totient function iphi (A091732) replaces the Euler totient function (A000010).

Examples

			10 is an infinitary perfect totient number because iphi(10) + iphi(iphi(10)) + ... = 4 + 3 + 2 + 1 = 10.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], ?(# == 1 &)])); iphi[1] = 1; iphi[n] := iphi[n] = Times @@ (Flatten@(f @@@ FactorInteger[n]) - 1); infPerfTotQ[n_] := Plus @@ FixedPointList[iphi@# &, n] == 2 n + 1; Select[Range[1000], infPerfTotQ]

A333609 The number of iterations of the infinitary totient function iphi (A091732) required to reach from n to 1.

Original entry on oeis.org

0, 1, 2, 3, 4, 2, 3, 3, 4, 4, 5, 3, 4, 3, 4, 5, 6, 4, 5, 4, 4, 5, 6, 3, 4, 4, 6, 5, 6, 4, 5, 5, 5, 6, 4, 4, 5, 5, 4, 4, 5, 4, 5, 5, 6, 6, 7, 5, 6, 4, 6, 5, 6, 6, 5, 5, 5, 6, 7, 4, 5, 5, 6, 7, 6, 5, 6, 6, 6, 4, 5, 4, 5, 5, 6, 7, 5, 4, 5, 5, 6, 5, 6, 5, 8, 5, 6
Offset: 1

Views

Author

Amiram Eldar, Mar 28 2020

Keywords

Examples

			a(6) = 2 since there are 2 iterations from 6 to 1: iphi(6) = 2 and iphi(2) = 1.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], 1])); iphi[1] = 1; iphi[n_] := Times @@ (Flatten@(f @@@ FactorInteger[n]) - 1); a[n_] := Length @ NestWhileList[iphi, n, # != 1 &] - 1; Array[a, 100]

A340087 a(n) = gcd(n-1, A091732(n)), where A091732 is an infinitary analog of Euler's phi function.

Original entry on oeis.org

1, 1, 2, 3, 4, 1, 6, 1, 8, 1, 10, 1, 12, 1, 2, 15, 16, 1, 18, 1, 4, 1, 22, 1, 24, 1, 2, 9, 28, 1, 30, 1, 4, 1, 2, 1, 36, 1, 2, 3, 40, 1, 42, 1, 4, 1, 46, 1, 48, 1, 2, 3, 52, 1, 2, 1, 4, 1, 58, 1, 60, 1, 2, 9, 16, 5, 66, 1, 4, 3, 70, 1, 72, 1, 2, 3, 4, 1, 78, 1, 80, 1, 82, 1, 4, 1, 2, 3, 88, 1, 18, 1, 4, 1, 2, 5, 96
Offset: 1

Views

Author

Antti Karttunen, Dec 31 2020

Keywords

Crossrefs

Cf. also A049559.

Programs

  • PARI
    ispow2(n) = (n && !bitand(n,n-1));
    A302777(n) = ispow2(isprimepower(n));
    A091732(n) = { my(m=1); while(n > 1, fordiv(n, d, if((dA302777(n/d), m *= ((n/d)-1); n = d; break))); (m); };
    A340087(n) = gcd(n-1, A091732(n));

Formula

a(n) = gcd(n-1, A091732(n)).
a(n) = A091732(n) / A340088(n).
For n > 1, a(n) = (n-1) / A340089(n).

A340088 a(n) = A091732(n) / gcd(n-1, A091732(n)), where A091732 is an infinitary analog of Euler's phi function.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 1, 4, 1, 6, 1, 6, 4, 1, 1, 8, 1, 12, 3, 10, 1, 6, 1, 12, 8, 2, 1, 8, 1, 15, 5, 16, 12, 24, 1, 18, 12, 4, 1, 12, 1, 30, 8, 22, 1, 30, 1, 24, 16, 12, 1, 16, 20, 18, 9, 28, 1, 24, 1, 30, 24, 5, 3, 4, 1, 48, 11, 8, 1, 24, 1, 36, 24, 18, 15, 24, 1, 60, 1, 40, 1, 36, 16, 42, 28, 10, 1, 32, 4, 66
Offset: 1

Views

Author

Antti Karttunen, Dec 31 2020

Keywords

Comments

Conjecture: a(n) = 1 iff n = 1 or in A050376. This is an infinitary analog of Lehmer's totient conjecture from 1932.
For all i, j > 1: a(i) = a(j) => A302777(i) = A302777(j), if the above conjecture holds.

Crossrefs

Programs

  • PARI
    ispow2(n) = (n && !bitand(n,n-1));
    A302777(n) = ispow2(isprimepower(n));
    A091732(n) = { my(m=1); while(n > 1, fordiv(n, d, if((dA302777(n/d), m *= ((n/d)-1); n = d; break))); (m); };
    A340088(n) = { my(x=A091732(n)); (x/gcd(n-1, x)); };

Formula

a(n) = A091732(n) / A340087(n) = A091732(n) / gcd(n-1, A091732(n)).
For all n >= 1, a(A084400(n)) = 1.

A340089 a(n) = (n-1) / gcd(n-1, A091732(n)), where A091732 is an infinitary analog of Euler's phi function.

Original entry on oeis.org

0, 1, 1, 1, 1, 5, 1, 7, 1, 9, 1, 11, 1, 13, 7, 1, 1, 17, 1, 19, 5, 21, 1, 23, 1, 25, 13, 3, 1, 29, 1, 31, 8, 33, 17, 35, 1, 37, 19, 13, 1, 41, 1, 43, 11, 45, 1, 47, 1, 49, 25, 17, 1, 53, 27, 55, 14, 57, 1, 59, 1, 61, 31, 7, 4, 13, 1, 67, 17, 23, 1, 71, 1, 73, 37, 25, 19, 77, 1, 79, 1, 81, 1, 83, 21, 85, 43, 29, 1, 89
Offset: 1

Views

Author

Antti Karttunen, Dec 31 2020

Keywords

Crossrefs

Cf. also A160596.

Programs

  • PARI
    ispow2(n) = (n && !bitand(n,n-1));
    A302777(n) = ispow2(isprimepower(n));
    A091732(n) = { my(m=1); while(n > 1, fordiv(n, d, if((dA302777(n/d), m *= ((n/d)-1); n = d; break))); (m); };
    A340089(n) = ((n-1)/gcd(n-1, A091732(n)));

Formula

a(n) = (n-1) / A340087(n) = (n-1) / gcd(n-1, A091732(n)).

A362486 Infinitary nontotient numbers: values not in the range of the infinitary totient function iphi (A091732).

Original entry on oeis.org

5, 7, 9, 11, 13, 14, 17, 19, 21, 23, 25, 26, 27, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 47, 49, 50, 51, 53, 55, 57, 59, 61, 62, 63, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 81, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 98, 99, 101, 103, 105, 107, 109, 110, 111
Offset: 1

Views

Author

Amiram Eldar, Apr 22 2023

Keywords

Comments

Numbers k such that A091732(x) = k has no solution, i.e., A362485(k) = 0.
Most of the odd numbers are in this sequence. Odd numbers that are not here are 1, 3, 15, 45, 255, 765, 3825, 11475, 65535, 196605, 983025, ..., which are the values of iphi at powers of 2.

Crossrefs

Similar sequences: A005277, A005278, A347771, A362182.

Programs

  • Mathematica
    Select[Range[120], Length[invIPhi[#]] == 0 &] (* using the function invIPhi from A362484 *)

Formula

A362485(a(n)) = 0.

A323413 Infinitary analog of cototient function A051953: a(n) = n - A091732(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 4, 1, 5, 1, 6, 1, 6, 1, 8, 7, 1, 1, 10, 1, 8, 9, 12, 1, 18, 1, 14, 11, 10, 1, 22, 1, 17, 13, 18, 11, 12, 1, 20, 15, 28, 1, 30, 1, 14, 13, 24, 1, 18, 1, 26, 19, 16, 1, 38, 15, 38, 21, 30, 1, 36, 1, 32, 15, 19, 17, 46, 1, 20, 25, 46, 1, 48, 1, 38, 27, 22, 17, 54, 1, 20, 1, 42, 1, 48, 21, 44, 31, 58, 1, 58, 19
Offset: 1

Views

Author

Antti Karttunen, Jan 15 2019

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], 1])); a[1] = 0; a[n_] := n - Times @@ (Flatten@(f @@@ FactorInteger[n]) - 1); Array[a, 100] (* Amiram Eldar, Jan 09 2021 *)
  • PARI
    ispow2(n) = (n && !bitand(n,n-1));
    A302777(n) = ispow2(isprimepower(n));
    A091732(n) = { my(m=1); while(n > 1, fordiv(n, d, if((dA302777(n/d), m *= ((n/d)-1); n = d; break))); (m); };
    A323413(n) = (n-A091732(n));

Formula

a(n) = n - A091732(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = 1/2 - A327575 = 0.171064... . - Amiram Eldar, Dec 15 2023
Showing 1-10 of 33 results. Next