A091761 a(n) = Pell(4n) / Pell(4).
0, 1, 34, 1155, 39236, 1332869, 45278310, 1538129671, 52251130504, 1775000307465, 60297759323306, 2048348816684939, 69583562007964620, 2363792759454112141, 80299370259431848174, 2727814796061228725775, 92665403695822344828176, 3147895910861898495432209
Offset: 0
Links
- M. F. Hasler, Table of n, a(n) for n = 0..99
- R. K. Guy, A new sequence, post to the SeqFan list, Feb 05 2013.
- Tanya Khovanova, Recursive Sequences
- Paulo Ribenboim and Wayne L. McDaniel, The Square Terms in Lucas Sequences, Journal of Number Theory 58, 104-123 (1996).
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (34,-1).
Crossrefs
Programs
-
Magma
I:=[0,1]; [n le 2 select I[n] else 34*Self(n-1)-Self(n-2): n in [1..20]]; // G. C. Greubel, Mar 11 2019
-
Maple
with (combinat):seq(fibonacci(4*n,2)/12, n=0..17); # Zerinvary Lajos, Apr 21 2008
-
Mathematica
LinearRecurrence[{34,-1}, {0,1}, 20] (* G. C. Greubel, Mar 11 2019 *)
-
PARI
A091761(n, x=[ -1,17],A=[17,72*4;1,17]) = vector(n,i,(x*=A)[1]) \\ M. F. Hasler, May 26 2007
-
PARI
A091761(n)=([34,1;-1,0]^(n-1))[1,1] \\ M. F. Hasler, Jun 05 2007
-
Sage
[lucas_number1(n,34,1) for n in range(0, 16)]# Zerinvary Lajos, Nov 07 2009
Formula
G.f.: x/(1-34*x+x^2).
a(n) = ((1+sqrt(2))^(4n) - (1-sqrt(2))^(4n))*sqrt(2)/48.
From M. F. Hasler, Jun 05 2007: (Start)
a(n) = n (mod 2^m) for any m >= 0.
a(n) = sinh(4*n*log(sqrt(2)+1))/(12*sqrt(2)).
a(n) = A[1,1], first element of the 2 X 2 matrix A = (34,1;-1,0)^(n-1). (End)
a(n) = 34*a(n-1) - a(n-2); a(0)=0, a(1)=1. - Philippe Deléham, Nov 03 2008
A029547(n) = a(n+1). - M. F. Hasler, Feb 05 2013
a(n) = sqrt((A056771(n)^2 - 1)/(32*9)), n >= 0. See the Pell remark above. - Wolfdieter Lang, Mar 11 2019
E.g.f.: exp(17*x)*sinh(12*sqrt(2)*x)/(12*sqrt(2)). - Stefano Spezia, Apr 16 2023
a(n) = A002965(8*n)/12. - Gerry Martens, Jul 14 2023
Comments