A091811 Array read by rows: T(n,k) = binomial(n+k-2,k-1)*binomial(2*n-1,n-k).
1, 3, 2, 10, 15, 6, 35, 84, 70, 20, 126, 420, 540, 315, 70, 462, 1980, 3465, 3080, 1386, 252, 1716, 9009, 20020, 24024, 16380, 6006, 924, 6435, 40040, 108108, 163800, 150150, 83160, 25740, 3432, 24310, 175032, 556920, 1021020, 1178100, 875160
Offset: 1
Examples
Triangle starts: 1, 3, 2, 10, 15, 6, 35, 84, 70, 20, 126, 420, 540, 315, 70, ...
Crossrefs
Programs
-
Magma
[[Binomial(n+k-2,k-1)*Binomial(2*n-1,n-k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Jun 15 2015
-
Mathematica
t[n_, k_] := Binomial[n+k-2, k-1]*Binomial[2n-1, n-k]; Table[t[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 06 2012 *)
-
PARI
T(x,y)=binomial(x+y-2,y-1)*binomial(2*x-1,x-y)
Formula
From Peter Bala, Apr 10 2012: (Start)
O.g.f.: x*t*(1+2*x-sqrt(1-4*t*(x+1)))/(2*(x+t)*sqrt(1-4*t*(x+1))) = x*t + (3*x+2*x^2)*t^2 + (10*x+15*x^2+6*x^3)*t^3 + ....
Sum_{k = 1..n} (-1)^(k-1)*T(n,k)*2^(n-k) = 4^(n-1).
Row polynomial R(n+1,x) = ((2*n+1)!/n!^2)*x*Integral_{y = 0..1} (y*(1+x*y))^n dy. Row sums A178792. (End)
Comments