cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091811 Array read by rows: T(n,k) = binomial(n+k-2,k-1)*binomial(2*n-1,n-k).

Original entry on oeis.org

1, 3, 2, 10, 15, 6, 35, 84, 70, 20, 126, 420, 540, 315, 70, 462, 1980, 3465, 3080, 1386, 252, 1716, 9009, 20020, 24024, 16380, 6006, 924, 6435, 40040, 108108, 163800, 150150, 83160, 25740, 3432, 24310, 175032, 556920, 1021020, 1178100, 875160
Offset: 1

Views

Author

Benoit Cloitre, Mar 18 2004

Keywords

Comments

Alternating sum of elements of n-th row = 1.
If a certain event has a probability p of occurring in any given trial, the probability of its occurring at least n times in 2n-1 trials is Sum_{k=1..n} T(n,k)*(-1)^(k-1)*p^(n+k-1). For example, the probability of its occurring at least 4 out of 7 times is 35p^4 - 84p^5 + 70p^6 - 20p^7. - Matthew Vandermast, Jun 05 2004
With the row polynomial defined as R(n,x) = Sum_{k = 1..n} T(n,k)*x^k, the row polynomial is related to the regularized incomplete Beta function I_x(a,b), through the relation R(n,x) = -(-x)^{-n+1}*I_{-x}(n,n). - Leo C. Stein, Jun 06 2019

Examples

			Triangle starts:
    1,
    3,   2,
   10,  15,   6,
   35,  84,  70,  20,
  126, 420, 540, 315, 70,
  ...
		

Crossrefs

Cf. A001700 (first column), A002740 (second column), A000984 (main diagonal), A033876 (second diagonal), A178792 (row sums).

Programs

  • Magma
    [[Binomial(n+k-2,k-1)*Binomial(2*n-1,n-k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Jun 15 2015
  • Mathematica
    t[n_, k_] := Binomial[n+k-2, k-1]*Binomial[2n-1, n-k]; Table[t[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 06 2012 *)
  • PARI
    T(x,y)=binomial(x+y-2,y-1)*binomial(2*x-1,x-y)
    

Formula

From Peter Bala, Apr 10 2012: (Start)
O.g.f.: x*t*(1+2*x-sqrt(1-4*t*(x+1)))/(2*(x+t)*sqrt(1-4*t*(x+1))) = x*t + (3*x+2*x^2)*t^2 + (10*x+15*x^2+6*x^3)*t^3 + ....
Sum_{k = 1..n} (-1)^(k-1)*T(n,k)*2^(n-k) = 4^(n-1).
Row polynomial R(n+1,x) = ((2*n+1)!/n!^2)*x*Integral_{y = 0..1} (y*(1+x*y))^n dy. Row sums A178792. (End)