A091868 a(n) = (n!)^(n+1).
1, 1, 8, 1296, 7962624, 2985984000000, 100306130042880000000, 416336312719673760153600000000, 281633758444745849464726940024832000000000, 39594086612242519324387557078266845776303882240000000000
Offset: 0
Links
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021.
- Peter J. Taylor, Determinant of matrix with Stirling numbers as elements
- Eric Weisstein's World of Mathematics, Fibonacci Polynomial
Crossrefs
Cf. A036740.
Programs
-
Magma
[Factorial(n)^(n+1): n in [0..10]]; // Vincenzo Librandi, Nov 25 2015
-
Maple
(n!)^(n+1); a[0]:=1:for n from 1 to 20 do a[n]:=product(n!, k=0..n) od: seq(a[n], n=0..8); # Zerinvary Lajos, Jun 11 2007 seq(mul(mul(j,j=1..n), k=0..n), n=0..8); # Zerinvary Lajos, Sep 21 2007
-
Mathematica
Table[(n!)^(n+1),{n,0,8}] (* Harvey P. Dale, Apr 30 2012 *)
Formula
a(n) = (n!)^(n+1) = a(n-1) * n^n * n!.
a(n) = A000178(n)*A002109(n), i.e., product of superfactorials and hyperfactorials. - Henry Bottomley, Nov 13 2009
a(n) ~ (2*Pi)^((n+1)/2) * n^((n+1)*(2*n+1)/2) / exp(n^2 + n - 1/12). - Vaclav Kotesovec, Jul 10 2015
Extensions
Edited by N. J. A. Sloane, Oct 24 2009 at the suggestion of R. J. Mathar
a(9) from Vincenzo Librandi, Nov 25 2015
Comments