cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091933 Decimal expansion of e^3.

Original entry on oeis.org

2, 0, 0, 8, 5, 5, 3, 6, 9, 2, 3, 1, 8, 7, 6, 6, 7, 7, 4, 0, 9, 2, 8, 5, 2, 9, 6, 5, 4, 5, 8, 1, 7, 1, 7, 8, 9, 6, 9, 8, 7, 9, 0, 7, 8, 3, 8, 5, 5, 4, 1, 5, 0, 1, 4, 4, 3, 7, 8, 9, 3, 4, 2, 2, 9, 6, 9, 8, 8, 4, 5, 8, 7, 8, 0, 9, 1, 9, 7, 3, 7, 3, 1, 2, 0, 4, 4, 9, 7, 1, 6, 0, 2, 5, 3, 0, 1, 7, 7, 0
Offset: 2

Views

Author

Mohammad K. Azarian, Mar 16 2004

Keywords

Comments

Also where x^(1/x^(1/3)) is a maximum. - Robert G. Wilson v, Oct 22 2014

Examples

			exp(3) = e^3 = 20.0855369231876677409285296545817178969879... - _Harry J. Smith_, Apr 30 2009
		

Crossrefs

Programs

  • Maple
    Digits:=100: evalf(exp(3)); # Wesley Ivan Hurt, Jul 07 2014
  • Mathematica
    RealDigits[E^3, 10, 100][[1]] (* Alonso del Arte, Jul 07 2014 *)
  • PARI
    default(realprecision, 20080); x=exp(3)/10; for (n=2, 20000, d=floor(x); x=(x-d)*10; write("b091933.txt", n, " ", d)); \\ Harry J. Smith, Apr 30 2009

Formula

From Peter Bala, Jan 12 2022: (Start)
e^3 = Sum_{n >= 0} 3^n/n!. Faster converging series include
e^3 = 18*Sum_{n >= 0} 3^n/(p(n-1)*p(n)*n!), where p(n) = n^2 - 3*n + 5 and
e^3 = -162*Sum_{n >= 0} 3^n/(q(n-2)*q(n-1)*n!), where q(n) = n^3 + 8*n - 3.
e^3 = 22 - Sum_{n >= 0} 3^(n+4)/((n+3)^2*(n+4)^2*n!) and
22/e^3 = 1 - 2*Sum_{n >= 0} (-3)^(n+2)*n^2/(n+3)!.
e^3 = lim_{n -> oo} f(n+2)*f(n)/(n^2*f(n+1)^2), where f(n) = n^(n^2). Compare with e = lim_{n -> oo} g(n+1)/(n*g(n)), where g(n) = n^n. (End)