cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091940 Given n colors, sequence gives number of ways to color the vertices of a square such that no edge has the same color on both of its vertices.

Original entry on oeis.org

0, 2, 18, 84, 260, 630, 1302, 2408, 4104, 6570, 10010, 14652, 20748, 28574, 38430, 50640, 65552, 83538, 104994, 130340, 160020, 194502, 234278, 279864, 331800, 390650, 457002, 531468, 614684, 707310, 810030, 923552, 1048608, 1185954, 1336370, 1500660
Offset: 1

Views

Author

Ryan Witko (witko(AT)nyu.edu), Mar 11 2004

Keywords

Comments

Also equals the number of pairs of pairs ((a_1,a_2),(b_1,b_2)) that are disjoint (a_i != b_j) where all elements belong to {1,...,n}. See A212085. - Lewis Baxter, Mar 06 2023

Examples

			a(4) = 84 since there are 84 different ways to color the vertices of a square with 4 colors such that no two vertices that share an edge are the same color.
There are 4 possible colors for the first vertex and 3 for the second vertex. For the third vertex, divide into two cases: the third vertex can be the same color as the first vertex, and then the fourth vertex has 3 possible colors (4 * 3 * 1 * 3 = 36 colorings). Or the third vertex can be a different color from the first vertex, and then the fourth vertex has 2 possible colors (4 * 3 * 2 * 2 = 48 colorings). So there are a total of 36 + 48 = 84. - _Michael B. Porter_, Jul 24 2016
		

Crossrefs

Column k=2 of A212085.

Programs

Formula

a(n) = 2*C(n,2) + 12*C(n,3) + 24*C(n,4) = n*(n-1)*(n^2-3*n+3).
a(n) = (n-1) + (n-1)^4. - Rainer Rosenthal, Dec 03 2006
G.f.: 2*x^2*(1+4*x+7*x^2)/(1-x)^5. a(n) = 2*A027441(n-1). - R. J. Mathar, Sep 09 2008
For n > 1, a(n) = floor(n^7/(n^3-1)). - Gary Detlefs, Feb 10 2010
a(n) = 2 * A000217(n-1) * A002061(n-1), n >= 1. - Daniel Forgues, Jul 14 2016
E.g.f.: exp(x)*x^2*(1 + x)^2. - Stefano Spezia, Oct 08 2022

Extensions

More terms from Robert G. Wilson v, Mar 16 2004