cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092276 Triangle read by rows: T(n,k) is the number of noncrossing trees with root degree equal to k.

Original entry on oeis.org

1, 2, 1, 7, 4, 1, 30, 18, 6, 1, 143, 88, 33, 8, 1, 728, 455, 182, 52, 10, 1, 3876, 2448, 1020, 320, 75, 12, 1, 21318, 13566, 5814, 1938, 510, 102, 14, 1, 120175, 76912, 33649, 11704, 3325, 760, 133, 16, 1, 690690, 444015, 197340, 70840, 21252, 5313, 1078, 168, 18, 1
Offset: 1

Views

Author

Emeric Deutsch, Feb 24 2004

Keywords

Comments

With offset 0, Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A006013. - Philippe Deléham, Jan 23 2010

Examples

			Triangle begins:
     1;
     2,    1;
     7,    4,    1;
    30,   18,    6,   1;
   143,   88,   33,   8,  1;
   728,  455,  182,  52, 10,  1;
  3876, 2448, 1020, 320, 75, 12, 1;
  ...
Top row of M^3 = (30, 18, 6, 1)
From _Peter Bala_, Nov 25 2024: (Start)
The transposed array as an infinite product of upper triangular arrays:
  /1 2 3 4 5 ... \/1            \/1              \       /1 2 7 30 143 ...\
  |  1 2 3 4 ... ||  1 2 3 4 ...||  1            |       |  1 4 18  88 ...|
  |    1 2 3 ... ||    1 2 3 ...||    1 2 3 4 ...| ... = |    1  6  33 ...|
  |      1 2 ... ||      1 2 ...||      1 2 3 ...|       |       1   8 ...|
  |        1 ... ||        1 ...||        1 2 ...|       |           1 ...|
  |          ... ||          ...||            ...|       |             ...|
Cf. A078812. (End)
		

Crossrefs

Row sums give sequence A001764.
Columns 1..5 are A006013, A006629, A006630, A006631, A233657.

Programs

  • Maple
    T := proc(n,k) if k=n then 1 else 2*k*binomial(3*n-k,n-k)/(3*n-k) fi end: seq(seq(T(n,k),k=1..n),n=1..11);
  • Mathematica
    t[n_, n_] = 1; t[n_, k_] := 2*k*Binomial[3*n-k, n-k]/(3*n-k); Table[t[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 22 2012, after Maple *)
  • PARI
    T(n, k) = 2*k*binomial(3*n-k, n-k)/(3*n-k); \\ Andrew Howroyd, Nov 06 2017

Formula

T(n, k) = 2*k*binomial(3n-k, n-k)/(3n-k).
G.f.: 1/(1-t*z*g^2), where g := 2*sin(arcsin(3*sqrt(3*z)/2)/3)/sqrt(3*z) is the g.f. of the sequence A001764.
T(n, k) = Sum_{j>=1} j*T(n-1, k-2+j). - Philippe Deléham, Sep 14 2005
With offset 0, T(n,k) = ((n+1)/(k+1))*binomial(3n-k+1, n-k). - Philippe Deléham, Jan 23 2010
From Gary W. Adamson, Jul 07 2011: (Start)
Let M = the production matrix
2, 1;
3, 2, 1;
4, 3, 2, 1;
5, 4, 3, 2, 1;
...
Top row of M^(n-1) generates n-th row terms of triangle A092276. Leftmost terms of each row = A006013 starting (1, 2, 7, 30, 143, ...). (End)
Working with an offset of 0, the inverse array is the Riordan array ((1 - x)^2, x*(1 - x)^2). - Peter Bala, Apr 30 2024