cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A078812 Triangle read by rows: T(n, k) = binomial(n+k-1, 2*k-1).

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 10, 6, 1, 5, 20, 21, 8, 1, 6, 35, 56, 36, 10, 1, 7, 56, 126, 120, 55, 12, 1, 8, 84, 252, 330, 220, 78, 14, 1, 9, 120, 462, 792, 715, 364, 105, 16, 1, 10, 165, 792, 1716, 2002, 1365, 560, 136, 18, 1, 11, 220, 1287, 3432, 5005, 4368, 2380, 816, 171, 20, 1
Offset: 0

Views

Author

Michael Somos, Dec 05 2002

Keywords

Comments

Warning: formulas and programs sometimes refer to offset 0 and sometimes to offset 1.
Apart from signs, identical to A053122.
Coefficient array for Morgan-Voyce polynomial B(n,x); see A085478 for references. - Philippe Deléham, Feb 16 2004
T(n,k) is the number of compositions of n having k parts when there are q kinds of part q (q=1,2,...). Example: T(4,2) = 10 because we have (1,3),(1,3'),(1,3"), (3,1),(3',1),(3",1),(2,2),(2,2'),(2',2) and (2',2'). - Emeric Deutsch, Apr 09 2005
T(n, k) is also the number of idempotent order-preserving full transformations (of an n-chain) of height k (height(alpha) = |Im(alpha)|). - Abdullahi Umar, Oct 02 2008
This sequence is jointly generated with A085478 as a triangular array of coefficients of polynomials v(n,x): initially, u(1,x) = v(1,x) = 1; for n > 1, u(n,x) = u(n-1,x) + x*v(n-1)x and v(n,x) = u(n-1,x) + (x+1)*v(n-1,x). See the Mathematica section. - Clark Kimberling, Feb 25 2012
Concerning Kimberling's recursion relations, see A102426. - Tom Copeland, Jan 19 2016
Subtriangle of the triangle T(n,k), 0 <= k <= n, read by rows, given by (0, 2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 27 2012
From Wolfdieter Lang, Aug 30 2012: (Start)
With offset [0,0] the triangle with entries R(n,k) = T(n+1,k+1):= binomial(n+k+1, 2*k+1), n >= k >= 0, and zero otherwise, becomes the Riordan lower triangular convolution matrix R = (G(x)/x, G(x)) with G(x):=x/(1-x)^2 (o.g.f. of A000027). This means that the o.g.f. of column number k of R is (G(x)^(k+1))/x. This matrix R is the inverse of the signed Riordan lower triangular matrix A039598, called in a comment there S.
The Riordan matrix with entries R(n,k), just defined, provides the transition matrix between the sequence entry F(4*m*(n+1))/L(2*l), with m >= 0, for n=0,1,... and the sequence entries 5^k*F(2*m)^(2*k+1) for k = 0,1,...,n, with F=A000045 (Fibonacci) and L=A000032 (Lucas). Proof: from the inverse of the signed triangle Riordan matrix S used in a comment on A039598.
For the transition matrix R (T with offset [0,0]) defined above, row n=2: F(12*m) /L(2*m) = 3*5^0*F(2*m)^1 + 4*5^1*F(2*m)^3 + 1*5^2*F(2*m)^5, m >= 0. (End)
From R. Bagula's comment in A053122 (cf. Damianou link p. 10), this array gives the coefficients (mod sign) of the characteristic polynomials for the Cartan matrix of the root system A_n. - Tom Copeland, Oct 11 2014
For 1 <= k <= n, T(n,k) equals the number of (n-1)-length ternary words containing k-1 letters equal 2 and avoiding 01. - Milan Janjic, Dec 20 2016
The infinite sum (Sum_{i >= 0} (T(s+i,1+i) / 2^(s+2*i)) * zeta(s+1+2*i)) = 1 allows any zeta(s+1) to be expressed as a sum of rational multiples of zeta(s+1+2*i) having higher arguments. For example, zeta(3) can be expressed as a sum involving zeta(5), zeta(7), etc. The summation for each s >= 1 uses the s-th diagonal of the triangle. - Robert B Fowler, Feb 23 2022
The convolution triangle of the nonnegative integers. - Peter Luschny, Oct 07 2022

Examples

			Triangle begins, 1 <= k <= n:
                          1
                        2   1
                      3   4   1
                    4  10   6   1
                  5  20  21   8   1
                6  35  56  36  10   1
              7  56 126 120  55  12   1
            8  84 252 330 220  78  14   1
From _Peter Bala_, Feb 11 2025: (Start)
The array factorizes as an infinite product of lower triangular arrays:
  / 1               \    / 1              \ / 1              \ / 1             \
  | 2    1           |   | 2   1          | | 0  1           | | 0  1          |
  | 3    4   1       | = | 3   2   1      | | 0  2   1       | | 0  0  1       | ...
  | 4   10   6   1   |   | 4   3   2  1   | | 0  3   2  1    | | 0  0  2  1    |
  | 5   20  21   8  1|   | 5   4   3  2  1| | 0  4   3  2  1 | | 0  0  3  2  1 |
  |...               |   |...             | |...             | |...            |
Cf. A092276. (End)
		

Crossrefs

This triangle is formed from odd-numbered rows of triangle A011973 read in reverse order.
Row sums give A001906. With signs: A053122.
The column sequences are A000027, A000292, A000389, A000580, A000582, A001288 for k=1..6, resp. For k=7..24 they are A010966..(+2)..A011000 and for k=25..50 they are A017713..(+2)..A017763.

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(n+k+1, 2*k+1) ))); # G. C. Greubel, Aug 01 2019
  • Haskell
    a078812 n k = a078812_tabl !! n !! k
    a078812_row n = a078812_tabl !! n
    a078812_tabl = [1] : [2, 1] : f [1] [2, 1] where
       f us vs = ws : f vs ws where
         ws = zipWith (-) (zipWith (+) ([0] ++ vs) (map (* 2) vs ++ [0]))
                          (us ++ [0, 0])
    -- Reinhard Zumkeller, Dec 16 2013
    
  • Magma
    /* As triangle */ [[Binomial(n+k-1, 2*k-1): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Jun 01 2018
    
  • Maple
    for n from 1 to 11 do seq(binomial(n+k-1,2*k-1),k=1..n) od; # yields sequence in triangular form; Emeric Deutsch, Apr 09 2005
    # Uses function PMatrix from A357368. Adds a row and column above and to the left.
    PMatrix(10, n -> n); # Peter Luschny, Oct 07 2022
  • Mathematica
    (* First program *)
    u[1, x_]:= 1; v[1, x_]:= 1; z = 13;
    u[n_, x_]:= u[n-1, x] + x*v[n-1, x];
    v[n_, x_]:= u[n-1, x] + (x+1)*v[n-1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%] (* A085478 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%] (* A078812 *) (* Clark Kimberling, Feb 25 2012 *)
    (* Second program *)
    Table[Binomial[n+k+1, 2*k+1], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 01 2019 *)
  • Maxima
    T(n,m):=sum(binomial(2*k,n-m)*binomial(m+k,k)*(-1)^(n-m+k)*binomial(n+1,m+k+1),k,0,n-m); /* Vladimir Kruchinin, Apr 13 2016 */
    
  • PARI
    {T(n, k) = if( n<0, 0, binomial(n+k-1, 2*k-1))};
    
  • PARI
    {T(n, k) = polcoeff( polcoeff( x*y / (1 - (2 + y) * x + x^2) + x * O(x^n), n), k)};
    
  • Sage
    @cached_function
    def T(k,n):
        if k==n: return 1
        if k==0: return 0
        return sum(i*T(k-1,n-i) for i in (1..n-k+1))
    A078812 = lambda n,k: T(k,n)
    [[A078812(n,k) for k in (1..n)] for n in (1..8)] # Peter Luschny, Mar 12 2016
    
  • Sage
    [[binomial(n+k+1, 2*k+1) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 01 2019
    

Formula

G.f.: x*y / (1 - (2 + y)*x + x^2). To get row n, expand this in powers of x then expand the coefficient of x^n in increasing powers of y.
From Philippe Deléham, Feb 16 2004: (Start)
If indexing begins at 0 we have
T(n,k) = (n+k+1)!/((n-k)!*(2k+1))!.
T(n,k) = Sum_{j>=0} T(n-1-j, k-1)*(j+1) with T(n, 0) = n+1, T(n, k) = 0 if n < k.
T(n,k) = T(n-1, k-1) + T(n-1, k) + Sum_{j>=0} (-1)^j*T(n-1, k+j)*A000108(j) with T(n,k) = 0 if k < 0, T(0, 0)=1 and T(0, k) = 0 for k > 0.
G.f. for the column k: Sum_{n>=0} T(n, k)*x^n = (x^k)/(1-x)^(2k+2).
Row sums: Sum_{k>=0} T(n, k) = A001906(n+1). (End)
Antidiagonal sums are A000079(n) = Sum_{k=0..floor(n/2)} binomial(n+k+1, n-k). - Paul Barry, Jun 21 2004
Riordan array (1/(1-x)^2, x/(1-x)^2). - Paul Barry, Oct 22 2006
T(0,0) = 1, T(n,k) = 0 if k < 0 or if k > n, T(n,k) = T(n-1,k-1) + 2*T(n-1,k) - T(n-2,k). - Philippe Deléham, Jan 26 2010
For another version see A128908. - Philippe Deléham, Mar 27 2012
T(n,m) = Sum_{k=0..n-m} (binomial(2*k,n-m)*binomial(m+k,k)*(-1)^(n-m+k)* binomial(n+1,m+k+1)). - Vladimir Kruchinin, Apr 13 2016
T(n, k) = T(n-1, k) + (T(n-1, k-1) + T(n-2, k-1) + T(n-3, k-1) + ...) for k >= 2 with T(n, 1) = n. - Peter Bala, Feb 11 2025
From Peter Bala, May 04 2025: (Start)
With the column offset starting at 0, the n-th row polynomial B(n, x) = 1/sqrt(x + 4) * Chebyshev_U(2*n+1, (1/2)*sqrt(x + 4)) = (-1)^n * Chebyshev_U(n, -(1/2)*(x + 2)).
B(n, x) / Product_{k = 1..2*n} (1 + 1/B(k, x)) = b(n, x), the n-th row polynomial of A085478. (End)

Extensions

Edited by N. J. A. Sloane, Apr 28 2008

A006629 Self-convolution 4th power of A001764, which enumerates ternary trees.

Original entry on oeis.org

1, 4, 18, 88, 455, 2448, 13566, 76912, 444015, 2601300, 15426840, 92431584, 558685348, 3402497504, 20858916870, 128618832864, 797168807855, 4963511449260, 31032552351570, 194743066471800, 1226232861415695
Offset: 0

Views

Author

Keywords

Comments

Sum of root degrees of all noncrossing trees on nodes on a circle. - Emeric Deutsch

References

  • H. M. Finucan, Some decompositions of generalized Catalan numbers, pp. 275-293 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    A006629:= func< n | 2*Binomial(3*n+3,n)/(n+2) >;
    [A006629(n): n in [0..40]]; // G. C. Greubel, Aug 29 2025
    
  • Mathematica
    Table[2*Binomial[3*n+3,n]/(n+2), {n,0,40}] (* G. C. Greubel, Aug 29 2025 *)
  • PARI
    a(n)=my(m=4);binomial(3*n+m-1,n)*m/(2*n+m) /* 4th power of A001764 with offset n=0 */ \\ Paul D. Hanna, May 10 2008
    
  • SageMath
    def A006629(n): return 2*binomial(3*n+3,n)//(n+2)
    print([A006629(n) for n in range(41)]) # G. C. Greubel, Aug 29 2025

Formula

a(n) = 2*binomial(3*n+3,n)/(n+2). - Emeric Deutsch
a(n) = (n+1) * A000139(n+1). - F. Chapoton, Feb 23 2024
G.f.: hypergeom( [ 2, 5/3, 4/3 ]; [ 3, 5/2 ]; 27*x/4 ).
G.f.: A(x) = G(x)^4 where G(x) = 1 + x*G(x)^3 = g.f. of A001764 giving a(n)=C(3n+m-1,n)*m/(2n+m) at power m=4 with offset n=0. - Paul D. Hanna, May 10 2008
G.f.: (((4*sin(arcsin((3*sqrt(3*x))/2)/3))/(sqrt(3*x))-1)^2-1)/(4*x). - Vladimir Kruchinin, Feb 17 2023
E.g.f.: hypergeom([4/3, 5/3, 2]; [1, 5/2, 3]; 27*x/4). - G. C. Greubel, Aug 29 2025

Extensions

More precise definition from Paul D. Hanna, May 10 2008

A006630 From generalized Catalan numbers.

Original entry on oeis.org

1, 6, 33, 182, 1020, 5814, 33649, 197340, 1170585, 7012200, 42364476, 257854776, 1579730984, 9734161206, 60290077905, 375138262520, 2343880406595, 14699630061270, 92502956574105, 583920410197950, 3696470074992240, 23461536762704040, 149270218961671548
Offset: 0

Views

Author

Keywords

Comments

It appears that this is the self-convolution of A001764 starting 1, 3, 12, ... . - Alon Regev, Aug 07 2015

References

  • H. M. Finucan, Some decompositions of generalized Catalan numbers, pp. 275-293 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 3 of A092276.
Closely related to A000139.

Programs

  • Magma
    [2*Binomial(3*n+6, n)/(n+2): n in [0..25]]; // Vincenzo Librandi, Aug 07 2015
    
  • Mathematica
    Table[2 Binomial[3 n+6,n]/(n+2), {n, 0, 25}] (* Vincenzo Librandi, Aug 07 2015 *)
    CoefficientList[Series[(-1 + (2*Sin[(1/3)*ArcSin[(3*Sqrt[3]*Sqrt[x])/2]]) / (Sqrt[3]*Sqrt[x]))^2/x^2, {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 03 2022, after Vladimir Kruchinin *)
  • Maxima
    taylor(((1/sqrt(3/4*x)*sin(1/3*asin(sqrt(27/4*x)))-1)/x)^2,x,0,17); /* Vladimir Kruchinin, Oct 03 2022 */
    
  • Maxima
    makelist(2*binomial(3*n+6, n)/(n+2),n,0,30); /* Vladimir Kruchinin, Oct 03 2022 */
    
  • PARI
    a(n) = 2*binomial(3*n+6, n)/(n+2); \\ Andrew Howroyd, Nov 06 2017
    
  • SageMath
    def A006630(n): return 2*binomial(3*(n+2),n)//(n+2)
    print([A006630(n) for n in range(41)]) # G. C. Greubel, Aug 31 2025

Formula

G.f.: hypergeometric3_F_2([ 2, 8/3, 7/3 ], [ 4, 7/2 ], 27*x/4).
a(n) = 2*binomial(3*n+6, n)/(n+2). - Henry Bottomley, Sep 24 2001
G.f.: (1 - RootOf(x-t*(1-t)^2,t))^(-6) (algebraic function in Maple notation). - Mark van Hoeij, Nov 08 2011
G.f.: ((1/sqrt((3/4)*x)*sin((1/3)*asin(sqrt((27/4)*x)))-1)/x)^2. - Vladimir Kruchinin, Oct 03 2022
a(n) = (n+1)/2 * A000139(n+2). - F. Chapoton, Feb 23 2024

Extensions

More terms from Christopher Lund (clund(AT)san.rr.com), Apr 16 2002
a(21)-a(22) from Vincenzo Librandi, Aug 07 2015

A006631 From generalized Catalan numbers.

Original entry on oeis.org

1, 8, 52, 320, 1938, 11704, 70840, 430560, 2629575, 16138848, 99522896, 616480384, 3834669566, 23944995480, 150055305008, 943448717120, 5949850262895, 37628321318280, 238591135349700, 1516500543586560, 9660632784642840, 61670325204822048, 394451619337629792
Offset: 0

Views

Author

Keywords

References

  • H. M. Finucan, Some decompositions of generalized Catalan numbers, pp. 275-293 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 4 of A092276.
Cf. A006630.

Programs

  • Magma
    A006631:= func< n | 4*Binomial(3*n+7,n)/(n+4) >;
    [A006631(n): n in [0..40]]; // G. C. Greubel, Aug 31 2025
    
  • Mathematica
    Table[SeriesCoefficient[HypergeometricPFQ[{3,8/3,10/3},{5,9/2},27*x/4],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 07 2012 *)
    Table[4*Binomial[3*n+7,n]/(n+4), {n,0,40}] (* G. C. Greubel, Aug 31 2025 *)
  • PARI
    a(n) = 8*binomial(3*n + 8, n)/(3*n + 8);
    
  • SageMath
    def A006631(n): return 4*binomial(3*n+7,n)//(n+4)
    print([A006631(n) for n in range(41)]) # G. C. Greubel, Aug 31 2025

Formula

G.f.: hypergeometric3_F_2([ 3, 8/3, 10/3 ], [ 5, 9/2 ], 27*x/4).
Recurrence: 2*(n+4)*(2*n+7)*a(n) = (5*n+13)*(11*n+29)*a(n-1) - 7*(31*n^2+87*n+62)*a(n-2) + 21*(3*n-1)*(3*n+1)*a(n-3). - Vaclav Kotesovec, Oct 07 2012
a(n) ~ 3^(3*n+15/2)/(2^(2n+6)*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 07 2012
a(n) = 8*binomial(3*n + 8, n)/(3*n + 8). - Andrew Howroyd, Nov 06 2017

Extensions

More terms from Vincenzo Librandi, May 03 2013

A110616 A convolution triangle of numbers based on A001764.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 12, 7, 3, 1, 55, 30, 12, 4, 1, 273, 143, 55, 18, 5, 1, 1428, 728, 273, 88, 25, 6, 1, 7752, 3876, 1428, 455, 130, 33, 7, 1, 43263, 21318, 7752, 2448, 700, 182, 42, 8, 1, 246675, 120175, 43263, 13566, 3876, 1020, 245, 52, 9, 1
Offset: 0

Views

Author

Philippe Deléham, Sep 14 2005, Jun 15 2007

Keywords

Comments

Reflected version of A069269. - Vladeta Jovovic, Sep 27 2006
With offset 1 for n and k, T(n,k) = number of Dyck paths of semilength n for which all descents are of even length (counted by A001764) with no valley vertices at height 1 and with k returns to ground level. For example, T(3,2)=2 counts U^4 D^4 U^2 D^2, U^2 D^2 U^4 D^4 where U=upstep, D=downstep and exponents denote repetition. - David Callan, Aug 27 2009
Riordan array (f(x), x*f(x)) with f(x) = (2/sqrt(3*x))*sin((1/3)*arcsin(sqrt(27*x/4))). - Philippe Deléham, Jan 27 2014
Antidiagonals of convolution matrix of Table 1.4, p. 397, of Hoggatt and Bicknell. - Tom Copeland, Dec 25 2019

Examples

			Triangle begins:
       1;
       1,      1;
       3,      2,     1;
      12,      7,     3,     1;
      55,     30,    12,     4,    1;
     273,    143,    55,    18,    5,    1;
    1428,    728,   273,    88,   25,    6,   1;
    7752,   3876,  1428,   455,  130,   33,   7,  1;
   43263,  21318,  7752,  2448,  700,  182,  42,  8, 1;
  246675, 120175, 43263, 13566, 3876, 1020, 245, 52, 9, 1;
  ...
From _Peter Bala_, Feb 04 2025: (Start)
The transposed array factorizes as an infinite product of upper triangular arrays:
  / 1               \^T   /1             \^T /1             \^T / 1            \^T
  | 1    1           |   | 1   1          | | 0  1           |  | 0  1          |
  | 3    2   1       | = | 2   1   1      | | 0  1   1       |  | 0  0  1       | ...
  |12    7   3   1   |   | 5   2   1  1   | | 0  2   1  1    |  | 0  0  1  1    |
  |55   30  12   4  1|   |14   5   2  1  1| | 0  5   2  1  1 |  | 0  0  2  1  1 |
  |...               |   |...             | |...             |  |...            |
where T denotes transposition and [1, 1, 2, 5, 14,...] is the sequence of Catalan numbers A000108. (End)
		

Crossrefs

Successive columns: A001764, A006013, A001764, A006629, A102893, A006630, A102594, A006631; row sums: A098746; see also A092276.

Programs

  • Mathematica
    Table[(k + 1) Binomial[3 n - 2 k, 2 n - k]/(2 n - k + 1), {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jun 28 2017 *)
  • Maxima
    T(n,k):=((k+1)*binomial(3*n-2*k,2*n-k))/(2*n-k+1); /* Vladimir Kruchinin, Nov 01 2011 */

Formula

T(n, k) = Sum_{j>=0} T(n-1, k-1+j)*A000108(j); T(0, 0) = 1; T(n, k) = 0 if k < 0 or if k > n.
G.f.: 1/(1 - x*y*TernaryGF) = 1 + (y)x + (y+y^2)x^2 + (3y+2y^2+y^3)x^3 +... where TernaryGF = 1 + x + 3x^2 + 12x^3 + ... is the GF for A001764. - David Callan, Aug 27 2009
T(n, k) = ((k+1)*binomial(3*n-2*k,2*n-k))/(2*n-k+1). - Vladimir Kruchinin, Nov 01 2011

A071948 Triangle read by rows of numbers of paths in a lattice satisfying certain conditions.

Original entry on oeis.org

1, 1, 2, 1, 4, 7, 1, 6, 18, 30, 1, 8, 33, 88, 143, 1, 10, 52, 182, 455, 728, 1, 12, 75, 320, 1020, 2448, 3876, 1, 14, 102, 510, 1938, 5814, 13566, 21318, 1, 16, 133, 760, 3325, 11704, 33649, 76912, 120175, 1, 18, 168, 1078, 5313, 21252, 70840, 197340, 444015
Offset: 0

Views

Author

N. J. A. Sloane, Jun 15 2002

Keywords

Comments

This is the table of h(n,k) in the notation of Carlitz (p.125). The triangle (with an offset of 1 rather than 0) enumerates two-line arrays of positive integers
............1 a_2 ... a_(n-1) a_n..........
............1 b_2 ... b_(n-1) b_n..........
such that a_i <= i (2 <= i <= n) and b_2 <= a_2 <= ... <= b_n <= a_n = k.
See A193091 and A211788 for other two-line array enumerations. - Peter Bala, Aug 02 2012

Examples

			Triangle begins
  1;
  1, 2;
  1, 4,  7;
  1, 6, 18, 30;
  1, 8, 33, 88, 143;
		

Crossrefs

Row sums give A001764.
Rows are the reversals of the rows of A092276.

Programs

  • Maple
    T := proc(n,k) if k<=n then (n-k+1)*binomial(2*n+k+1,k)/(n+1) else 0 fi end: seq(seq(T(n,k),k=0..n),n=0..10);
  • Mathematica
    t[n_, k_] /; k <= n := (n-k+1)*Binomial[2*n+k+1, k]/(n+1); t[, ] = 0; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)
  • Sage
    # Computes the first n rows of the triangle.
    def A071948_triangle(n) :
        D = [0 for i in (0..n+1)]; D[1] = 1
        for i in (4..2*n+3) :
            h = i//2 - 1
            for k in (1..h) : D[k] += D[k-1]
            if i%2 == 1 : print([D[z] for z in (1..h)])
    A071948_triangle(10)  # Peter Luschny, Apr 01 2012

Formula

T(n, n) = A006013(n).
T(n, k) = (n-k+1)binomial(2n+k+1, k)/(n+1) if k<=n.
Let M = the infinite square production matrix
2, 1;
3, 2, 1;
4, 3, 2, 1;
5, 4, 3, 2, 1;
...
The top row of M^n gives reversed terms of n-th row of triangle A071948; with leftmost terms of each row generating A006013 starting (1, 2, 7, 30, 143, ...). - Gary W. Adamson, Jul 07 2011

Extensions

Edited by Emeric Deutsch, Mar 04 2004

A109971 Inverse of Riordan array (1,x(1-x)^2), A109970.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 7, 4, 1, 0, 30, 18, 6, 1, 0, 143, 88, 33, 8, 1, 0, 728, 455, 182, 52, 10, 1, 0, 3876, 2448, 1020, 320, 75, 12, 1, 0, 21318, 13566, 5814, 1938, 510, 102, 14, 1, 0, 120175, 76912, 33649, 11704, 3325, 760, 133, 16, 1, 0, 690690, 444015, 197340
Offset: 0

Views

Author

Paul Barry, Jul 06 2005

Keywords

Comments

Row sums are A001764. Diagonal sums are A109972. Second column is A006013. Third column is A006629.

Examples

			Rows begin
1;
0,1;
0,2,1;
0,7,4,1;
0,30,18,6,1;
0,143,88,33,8,1;
Production array begins
0, 1
0, 2, 1
0, 3, 2, 1
0, 4, 3, 2, 1
0, 5, 4, 3, 2, 1
0, 6, 5, 4, 3, 2, 1,
0, 7, 6, 5, 4, 3, 2, 1
0, 8, 7, 6, 5, 4, 3, 2, 1
0, 9, 8, 7, 6, 5, 4, 3, 2, 1
... - _Philippe Deléham_, Mar 05 2013
		

Crossrefs

Essentially the same as A092276.

Formula

Number triangle T(0, 0)=1, T(0, k)=0, k>0, T(n, k)=(k/n)*binomial(3n-k-1, n-k) otherwise; Riordan array (1, f) where f(1-f)^2=x.
T(n, k)=sum{j=0..n, ((3j+1)/(2n+j+1))(-1)^(j-k)*C(3n, 2n+j)C(j, k)}; - Paul Barry, Oct 07 2005
T(n,k)=binomial(3n-k,n-k)*2k/(3n-k). (Paul Barry, May 18 2006)

A233657 a(n) = 10 * binomial(3*n+10,n)/(3*n+10).

Original entry on oeis.org

1, 10, 75, 510, 3325, 21252, 134550, 848250, 5340060, 33622600, 211915132, 1337675430, 8458829925, 53591180360, 340185835500, 2163581913780, 13786238414025, 88004926973250, 562763873596575, 3604713725613000, 23126371951808268, 148594788106641360
Offset: 0

Views

Author

Tim Fulford, Dec 14 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=3, r=10.

Crossrefs

Programs

  • Magma
    [10*Binomial(3*n+10, n)/(3*n+10): n in [0..30]];
  • Maple
    A233657:=n->10*binomial(3*n+10,n)/(3*n+10): seq(A233657(n), n=0..20); # Wesley Ivan Hurt, Oct 10 2014
  • Mathematica
    Table[10 Binomial[3 n + 10, n]/(3 n + 10), {n, 0, 30}]
  • PARI
    a(n) = 10*binomial(3*n+10,n)/(3*n+10);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(3/10))^10+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, here p=3, r=10.
+2*n*(n+5)*(2*n+9)*a(n) -3*(3*n+7)*(n+3)*(3*n+8)*a(n-1)=0. - R. J. Mathar, Feb 16 2018
E.g.f.: F([10/3, 11/3, 4], [1, 11/2, 6], 27*x/4), where F is the generalized hypergeometric function. - Stefano Spezia, Oct 08 2019

A172026 Riordan array (f(x^2), x*f(x^2)) where f(x) is the g.f. of A001764.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 3, 0, 3, 0, 1, 0, 7, 0, 4, 0, 1, 12, 0, 12, 0, 5, 0, 1, 0, 30, 0, 18, 0, 6, 0, 1, 55, 0, 55, 0, 25, 0, 7, 0, 1, 0, 143, 0, 88, 0, 33, 0, 8, 0, 1, 273, 0, 273, 0, 130, 0, 42, 0, 9, 0, 1, 0, 728, 0, 455, 0, 182, 0, 52, 0, 10, 0, 1, 1428, 0, 1428, 0, 700, 0, 245, 0
Offset: 0

Views

Author

Philippe Deléham, Jan 23 2010

Keywords

Comments

Another version of A110616. Riordan production matrix is: (x/(1-x^2), 1/(1-x^2)).

Examples

			Triangle begins : 1 ; 0,1 ; 1,0,1 ; 0,2,0,1 ; 3,0,3,0,1 ; 0,7,0,4,0,1 ; 12,0,12,0,5,0,1 ; ...
		

Crossrefs

Formula

Sum_{k, 0<=k<=n} T(n,k)= A047749(n+1).
Showing 1-9 of 9 results.