A006629
Self-convolution 4th power of A001764, which enumerates ternary trees.
Original entry on oeis.org
1, 4, 18, 88, 455, 2448, 13566, 76912, 444015, 2601300, 15426840, 92431584, 558685348, 3402497504, 20858916870, 128618832864, 797168807855, 4963511449260, 31032552351570, 194743066471800, 1226232861415695
Offset: 0
- H. M. Finucan, Some decompositions of generalized Catalan numbers, pp. 275-293 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- Emanuele Munarini, Shifting Property for Riordan, Sheffer and Connection Constants Matrices, Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.2.
- Joris Nieuwveld, Fractions, Functions and Folding. A Novel Link between Continued Fractions, Mahler Functions and Paper Folding, Master's Thesis, arXiv:2108.11382 [math.NT], 2021.
- C. H. Pah, Single polygon counting on Cayley Tree of order 3, J. Stat. Phys. 140 (2010) 198-207.
- Index entries for sequences related to rooted trees
-
A006629:= func< n | 2*Binomial(3*n+3,n)/(n+2) >;
[A006629(n): n in [0..40]]; // G. C. Greubel, Aug 29 2025
-
Table[2*Binomial[3*n+3,n]/(n+2), {n,0,40}] (* G. C. Greubel, Aug 29 2025 *)
-
a(n)=my(m=4);binomial(3*n+m-1,n)*m/(2*n+m) /* 4th power of A001764 with offset n=0 */ \\ Paul D. Hanna, May 10 2008
-
def A006629(n): return 2*binomial(3*n+3,n)//(n+2)
print([A006629(n) for n in range(41)]) # G. C. Greubel, Aug 29 2025
A092276
Triangle read by rows: T(n,k) is the number of noncrossing trees with root degree equal to k.
Original entry on oeis.org
1, 2, 1, 7, 4, 1, 30, 18, 6, 1, 143, 88, 33, 8, 1, 728, 455, 182, 52, 10, 1, 3876, 2448, 1020, 320, 75, 12, 1, 21318, 13566, 5814, 1938, 510, 102, 14, 1, 120175, 76912, 33649, 11704, 3325, 760, 133, 16, 1, 690690, 444015, 197340, 70840, 21252, 5313, 1078, 168, 18, 1
Offset: 1
Triangle begins:
1;
2, 1;
7, 4, 1;
30, 18, 6, 1;
143, 88, 33, 8, 1;
728, 455, 182, 52, 10, 1;
3876, 2448, 1020, 320, 75, 12, 1;
...
Top row of M^3 = (30, 18, 6, 1)
From _Peter Bala_, Nov 25 2024: (Start)
The transposed array as an infinite product of upper triangular arrays:
/1 2 3 4 5 ... \/1 \/1 \ /1 2 7 30 143 ...\
| 1 2 3 4 ... || 1 2 3 4 ...|| 1 | | 1 4 18 88 ...|
| 1 2 3 ... || 1 2 3 ...|| 1 2 3 4 ...| ... = | 1 6 33 ...|
| 1 2 ... || 1 2 ...|| 1 2 3 ...| | 1 8 ...|
| 1 ... || 1 ...|| 1 2 ...| | 1 ...|
| ... || ...|| ...| | ...|
Cf. A078812. (End)
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- Peter Bala, Factorisations of some Riordan arrays as infinite products
- Paul Barry, Characterizations of the Borel triangle and Borel polynomials, arXiv:2001.08799 [math.CO], 2020.
- Paul Barry, The second production matrix of a Riordan array, arXiv:2011.13985 [math.CO], 2020.
- P. Flajolet and M. Noy, Analytic combinatorics of non-crossing configurations, Discrete Math., 204, 203-229, 1999.
- M. Noy, Enumeration of noncrossing trees on a circle, Discrete Math., 180, 301-313, 1998.
-
T := proc(n,k) if k=n then 1 else 2*k*binomial(3*n-k,n-k)/(3*n-k) fi end: seq(seq(T(n,k),k=1..n),n=1..11);
-
t[n_, n_] = 1; t[n_, k_] := 2*k*Binomial[3*n-k, n-k]/(3*n-k); Table[t[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 22 2012, after Maple *)
-
T(n, k) = 2*k*binomial(3*n-k, n-k)/(3*n-k); \\ Andrew Howroyd, Nov 06 2017
A006631
From generalized Catalan numbers.
Original entry on oeis.org
1, 8, 52, 320, 1938, 11704, 70840, 430560, 2629575, 16138848, 99522896, 616480384, 3834669566, 23944995480, 150055305008, 943448717120, 5949850262895, 37628321318280, 238591135349700, 1516500543586560, 9660632784642840, 61670325204822048, 394451619337629792
Offset: 0
- H. M. Finucan, Some decompositions of generalized Catalan numbers, pp. 275-293 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
A006631:= func< n | 4*Binomial(3*n+7,n)/(n+4) >;
[A006631(n): n in [0..40]]; // G. C. Greubel, Aug 31 2025
-
Table[SeriesCoefficient[HypergeometricPFQ[{3,8/3,10/3},{5,9/2},27*x/4],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 07 2012 *)
Table[4*Binomial[3*n+7,n]/(n+4), {n,0,40}] (* G. C. Greubel, Aug 31 2025 *)
-
a(n) = 8*binomial(3*n + 8, n)/(3*n + 8);
-
def A006631(n): return 4*binomial(3*n+7,n)//(n+4)
print([A006631(n) for n in range(41)]) # G. C. Greubel, Aug 31 2025
A006634
a(n) = 3*binomial(4*n+8, n)/(n+3).
Original entry on oeis.org
1, 9, 72, 570, 4554, 36855, 302064, 2504304, 20974005, 177232627, 1509395976, 12943656180, 111676661460, 968786892675, 8445123522144, 73940567860896, 649942898236596, 5733561315124260, 50744886833898400, 450461491952952690, 4009721145437152530, 35782256673785401065
Offset: 0
- H. M. Finucan, Some decompositions of generalized Catalan numbers, pp. 275-293 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
A006634:= func< n | 3*Binomial(4*n+8,n)/(n+3) >;
[A006634(n): n in [0..40]]; // G. C. Greubel, Sep 01 2025
-
series(RootOf(g = 1+x*g^4,g)^9, x=0, 30); # Mark van Hoeij, Apr 22 2013
-
f[x_] := HypergeometricPFQ[ {9/4, 5/2, 11/4, 3}, {10/3, 11/3, 4}, 256/27*x]; Series[f[x], {x, 0, 16}] // CoefficientList[#, x]& (* Jean-François Alcover, Apr 23 2013, after Simon Plouffe *)
Table[3*Binomial[4*n+8,n]/(n+3), {n,0,40}] (* G. C. Greubel, Sep 01 2025 *)
-
N = 3*66; x = 'x + O('x^N);
g=serreverse(x-x^4)/x;
gf=g^9; v=Vec(gf);
vector(#v\3,n,v[3*n-2])
/* Joerg Arndt, Apr 23 2013 */
-
def A006634(n): return 3*binomial(4*(n+2),n)//(n+3)
print([A006634(n) for n in range(41)]) # G. C. Greubel, Sep 01 2025
A110616
A convolution triangle of numbers based on A001764.
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 12, 7, 3, 1, 55, 30, 12, 4, 1, 273, 143, 55, 18, 5, 1, 1428, 728, 273, 88, 25, 6, 1, 7752, 3876, 1428, 455, 130, 33, 7, 1, 43263, 21318, 7752, 2448, 700, 182, 42, 8, 1, 246675, 120175, 43263, 13566, 3876, 1020, 245, 52, 9, 1
Offset: 0
Triangle begins:
1;
1, 1;
3, 2, 1;
12, 7, 3, 1;
55, 30, 12, 4, 1;
273, 143, 55, 18, 5, 1;
1428, 728, 273, 88, 25, 6, 1;
7752, 3876, 1428, 455, 130, 33, 7, 1;
43263, 21318, 7752, 2448, 700, 182, 42, 8, 1;
246675, 120175, 43263, 13566, 3876, 1020, 245, 52, 9, 1;
...
From _Peter Bala_, Feb 04 2025: (Start)
The transposed array factorizes as an infinite product of upper triangular arrays:
/ 1 \^T /1 \^T /1 \^T / 1 \^T
| 1 1 | | 1 1 | | 0 1 | | 0 1 |
| 3 2 1 | = | 2 1 1 | | 0 1 1 | | 0 0 1 | ...
|12 7 3 1 | | 5 2 1 1 | | 0 2 1 1 | | 0 0 1 1 |
|55 30 12 4 1| |14 5 2 1 1| | 0 5 2 1 1 | | 0 0 2 1 1 |
|... | |... | |... | |... |
where T denotes transposition and [1, 1, 2, 5, 14,...] is the sequence of Catalan numbers A000108. (End)
- Peter Bala, Factorisations of some Riordan arrays as infinite products
- Paul Barry, Notes on Riordan arrays and lattice paths, arXiv:2504.09719 [math.CO], 2025. See pp. 27, 29.
- Paul Barry, d-orthogonal polynomials, Fuss-Catalan matrices and lattice paths, arXiv:2505.16718 [math.CO], 2025. See p. 21.
- Naiomi Cameron and J. E. McLeod, Returns and Hills on Generalized Dyck Paths, Journal of Integer Sequences, Vol. 19, 2016, #16.6.1.
- V. E. Hoggatt, Jr. and M. Bicknell, Catalan and related sequences arising from inverses of Pascal's triangle matrices, Fib. Quart., 14 (1976), 395-405.
- Sheng-Liang Yang and L. J. Wang, Taylor expansions for the m-Catalan numbers, Australasian Journal of Combinatorics, Volume 64(3) (2016), Pages 420-431.
-
Table[(k + 1) Binomial[3 n - 2 k, 2 n - k]/(2 n - k + 1), {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jun 28 2017 *)
-
T(n,k):=((k+1)*binomial(3*n-2*k,2*n-k))/(2*n-k+1); /* Vladimir Kruchinin, Nov 01 2011 */
A230547
a(n) = 3*binomial(3*n+9, n)/(n+3).
Original entry on oeis.org
1, 9, 63, 408, 2565, 15939, 98670, 610740, 3786588, 23535820, 146710476, 917263152, 5752004349, 36174046743, 228124619100, 1442387942520, 9142452842985, 58083251802345, 369816259792035, 2359448984037600
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906 [math.CO], 2007; Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
- Emanuele Munarini, Shifting Property for Riordan, Sheffer and Connection Constants Matrices, Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.2.
-
[9*Binomial(3*n+9, n)/(3*n+9): n in [0..30]];
-
Table[9 Binomial[3 n + 9, n]/(3 n + 9), {n, 0, 30}]
-
a(n) = 9*binomial(3*n+9,n)/(3*n+9);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(3/9))^9+x*O(x^n)); polcoeff(B, n)}
A233657
a(n) = 10 * binomial(3*n+10,n)/(3*n+10).
Original entry on oeis.org
1, 10, 75, 510, 3325, 21252, 134550, 848250, 5340060, 33622600, 211915132, 1337675430, 8458829925, 53591180360, 340185835500, 2163581913780, 13786238414025, 88004926973250, 562763873596575, 3604713725613000, 23126371951808268, 148594788106641360
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- David Bevan, Robert Brignall, Andrew Elvey Price and Jay Pantone, A structural characterisation of Av(1324) and new bounds on its growth rate, arXiv preprint arXiv:1711.10325 [math.CO], 2017-2019.
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906 [math.CO], 2007; Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955 (2010).
- Emanuele Munarini, Shifting Property for Riordan, Sheffer and Connection Constants Matrices, Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.2.
-
[10*Binomial(3*n+10, n)/(3*n+10): n in [0..30]];
-
A233657:=n->10*binomial(3*n+10,n)/(3*n+10): seq(A233657(n), n=0..20); # Wesley Ivan Hurt, Oct 10 2014
-
Table[10 Binomial[3 n + 10, n]/(3 n + 10), {n, 0, 30}]
-
a(n) = 10*binomial(3*n+10,n)/(3*n+10);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(3/10))^10+x*O(x^n)); polcoeff(B, n)}
A069269
Second level generalization of Catalan triangle (0th level is Pascal's triangle A007318; first level is Catalan triangle A009766; 3rd level is A069270).
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 3, 7, 12, 1, 4, 12, 30, 55, 1, 5, 18, 55, 143, 273, 1, 6, 25, 88, 273, 728, 1428, 1, 7, 33, 130, 455, 1428, 3876, 7752, 1, 8, 42, 182, 700, 2448, 7752, 21318, 43263, 1, 9, 52, 245, 1020, 3876, 13566, 43263, 120175, 246675
Offset: 0
Rows start
1;
1, 1;
1, 2, 3;
1, 3, 7, 12;
1, 4, 12, 30, 55;
A064282
Triangle read by rows: T(n,k) = binomial(3n+3, k)*(n-k+1)/(n+1).
Original entry on oeis.org
1, 1, 3, 1, 6, 12, 1, 9, 33, 55, 1, 12, 63, 182, 273, 1, 15, 102, 408, 1020, 1428, 1, 18, 150, 760, 2565, 5814, 7752, 1, 21, 207, 1265, 5313, 15939, 33649, 43263, 1, 24, 273, 1950, 9750, 35880, 98670, 197340, 246675, 1, 27, 348, 2842, 16443, 71253, 237510
Offset: 0
-
Flatten[Table[Binomial[3n+3,k] (n-k+1)/(n+1),{n,0,10},{k,0,n}]] (* Harvey P. Dale, Dec 26 2014 *)
-
{ n=-1; for (m=0, 10^9, for (k=0, m, a=binomial(3*m + 3, k)*(m - k + 1)/(m + 1); write("b064282.txt", n++, " ", a); if (n==1000, break)); if (n==1000, break) ) } \\ Harry J. Smith, Sep 11 2009
Showing 1-9 of 9 results.
Comments