cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A006629 Self-convolution 4th power of A001764, which enumerates ternary trees.

Original entry on oeis.org

1, 4, 18, 88, 455, 2448, 13566, 76912, 444015, 2601300, 15426840, 92431584, 558685348, 3402497504, 20858916870, 128618832864, 797168807855, 4963511449260, 31032552351570, 194743066471800, 1226232861415695
Offset: 0

Views

Author

Keywords

Comments

Sum of root degrees of all noncrossing trees on nodes on a circle. - Emeric Deutsch

References

  • H. M. Finucan, Some decompositions of generalized Catalan numbers, pp. 275-293 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    A006629:= func< n | 2*Binomial(3*n+3,n)/(n+2) >;
    [A006629(n): n in [0..40]]; // G. C. Greubel, Aug 29 2025
    
  • Mathematica
    Table[2*Binomial[3*n+3,n]/(n+2), {n,0,40}] (* G. C. Greubel, Aug 29 2025 *)
  • PARI
    a(n)=my(m=4);binomial(3*n+m-1,n)*m/(2*n+m) /* 4th power of A001764 with offset n=0 */ \\ Paul D. Hanna, May 10 2008
    
  • SageMath
    def A006629(n): return 2*binomial(3*n+3,n)//(n+2)
    print([A006629(n) for n in range(41)]) # G. C. Greubel, Aug 29 2025

Formula

a(n) = 2*binomial(3*n+3,n)/(n+2). - Emeric Deutsch
a(n) = (n+1) * A000139(n+1). - F. Chapoton, Feb 23 2024
G.f.: hypergeom( [ 2, 5/3, 4/3 ]; [ 3, 5/2 ]; 27*x/4 ).
G.f.: A(x) = G(x)^4 where G(x) = 1 + x*G(x)^3 = g.f. of A001764 giving a(n)=C(3n+m-1,n)*m/(2n+m) at power m=4 with offset n=0. - Paul D. Hanna, May 10 2008
G.f.: (((4*sin(arcsin((3*sqrt(3*x))/2)/3))/(sqrt(3*x))-1)^2-1)/(4*x). - Vladimir Kruchinin, Feb 17 2023
E.g.f.: hypergeom([4/3, 5/3, 2]; [1, 5/2, 3]; 27*x/4). - G. C. Greubel, Aug 29 2025

Extensions

More precise definition from Paul D. Hanna, May 10 2008

A092276 Triangle read by rows: T(n,k) is the number of noncrossing trees with root degree equal to k.

Original entry on oeis.org

1, 2, 1, 7, 4, 1, 30, 18, 6, 1, 143, 88, 33, 8, 1, 728, 455, 182, 52, 10, 1, 3876, 2448, 1020, 320, 75, 12, 1, 21318, 13566, 5814, 1938, 510, 102, 14, 1, 120175, 76912, 33649, 11704, 3325, 760, 133, 16, 1, 690690, 444015, 197340, 70840, 21252, 5313, 1078, 168, 18, 1
Offset: 1

Views

Author

Emeric Deutsch, Feb 24 2004

Keywords

Comments

With offset 0, Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A006013. - Philippe Deléham, Jan 23 2010

Examples

			Triangle begins:
     1;
     2,    1;
     7,    4,    1;
    30,   18,    6,   1;
   143,   88,   33,   8,  1;
   728,  455,  182,  52, 10,  1;
  3876, 2448, 1020, 320, 75, 12, 1;
  ...
Top row of M^3 = (30, 18, 6, 1)
From _Peter Bala_, Nov 25 2024: (Start)
The transposed array as an infinite product of upper triangular arrays:
  /1 2 3 4 5 ... \/1            \/1              \       /1 2 7 30 143 ...\
  |  1 2 3 4 ... ||  1 2 3 4 ...||  1            |       |  1 4 18  88 ...|
  |    1 2 3 ... ||    1 2 3 ...||    1 2 3 4 ...| ... = |    1  6  33 ...|
  |      1 2 ... ||      1 2 ...||      1 2 3 ...|       |       1   8 ...|
  |        1 ... ||        1 ...||        1 2 ...|       |           1 ...|
  |          ... ||          ...||            ...|       |             ...|
Cf. A078812. (End)
		

Crossrefs

Row sums give sequence A001764.
Columns 1..5 are A006013, A006629, A006630, A006631, A233657.

Programs

  • Maple
    T := proc(n,k) if k=n then 1 else 2*k*binomial(3*n-k,n-k)/(3*n-k) fi end: seq(seq(T(n,k),k=1..n),n=1..11);
  • Mathematica
    t[n_, n_] = 1; t[n_, k_] := 2*k*Binomial[3*n-k, n-k]/(3*n-k); Table[t[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 22 2012, after Maple *)
  • PARI
    T(n, k) = 2*k*binomial(3*n-k, n-k)/(3*n-k); \\ Andrew Howroyd, Nov 06 2017

Formula

T(n, k) = 2*k*binomial(3n-k, n-k)/(3n-k).
G.f.: 1/(1-t*z*g^2), where g := 2*sin(arcsin(3*sqrt(3*z)/2)/3)/sqrt(3*z) is the g.f. of the sequence A001764.
T(n, k) = Sum_{j>=1} j*T(n-1, k-2+j). - Philippe Deléham, Sep 14 2005
With offset 0, T(n,k) = ((n+1)/(k+1))*binomial(3n-k+1, n-k). - Philippe Deléham, Jan 23 2010
From Gary W. Adamson, Jul 07 2011: (Start)
Let M = the production matrix
2, 1;
3, 2, 1;
4, 3, 2, 1;
5, 4, 3, 2, 1;
...
Top row of M^(n-1) generates n-th row terms of triangle A092276. Leftmost terms of each row = A006013 starting (1, 2, 7, 30, 143, ...). (End)
Working with an offset of 0, the inverse array is the Riordan array ((1 - x)^2, x*(1 - x)^2). - Peter Bala, Apr 30 2024

A230547 a(n) = 3*binomial(3*n+9, n)/(n+3).

Original entry on oeis.org

1, 9, 63, 408, 2565, 15939, 98670, 610740, 3786588, 23535820, 146710476, 917263152, 5752004349, 36174046743, 228124619100, 1442387942520, 9142452842985, 58083251802345, 369816259792035, 2359448984037600
Offset: 0

Views

Author

Tim Fulford, Oct 23 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=3, r=9.

Crossrefs

Programs

  • Magma
    [9*Binomial(3*n+9, n)/(3*n+9): n in [0..30]];
  • Mathematica
    Table[9 Binomial[3 n + 9, n]/(3 n + 9), {n, 0, 30}]
  • PARI
    a(n) = 9*binomial(3*n+9,n)/(3*n+9);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(3/9))^9+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, here p=3, r=9.
D-finite with recurrence 2*n*(2*n+9)*(n+4)*a(n) -3*(3*n+7)*(n+2)*(3*n+8)*a(n-1)=0. - R. J. Mathar, Nov 22 2024
Showing 1-3 of 3 results.