cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092306 Number of partitions of n such that the set of parts has an even number of elements.

Original entry on oeis.org

1, 0, 0, 1, 2, 5, 6, 11, 13, 17, 23, 29, 34, 47, 64, 74, 107, 136, 185, 233, 308, 392, 518, 637, 814, 1002, 1272, 1560, 1912, 2339, 2863, 3475, 4212, 5123, 6147, 7398, 8935, 10734, 12843, 15464, 18382, 22041, 26249, 31326, 37213, 44273, 52375, 62103, 73376
Offset: 0

Views

Author

Vladeta Jovovic, Feb 12 2004

Keywords

Examples

			The partitions of five are: {{5}, {4, 1}, {3, 2}, {3, 1, 1}, {2, 2, 1}, {2, 1, 1, 1}, {1, 1, 1, 1, 1}}, The seven partitions have 1, 2, 2, 2, 2, 2 and 1 distinct parts respectively.
n=6 has A000041(6)=11 partitions: 6, 5+1, 4+2, 4+1+1, 3+3, 3+2+1, 3+1+1+1, 2+2+2, 2+2+1+1, 2+1+1+1+1 and 1+1+1+1+1+1 with partition sets: {6}, {1,5}, {2,4}, {1,4}, {3}, {1,2,3}, {1,3}, {2}, {1,2}, {1,2} and {1}, six of them have an even number of elements, therefore a(6)=6.
		

Crossrefs

Programs

  • Haskell
    import Data.List (group)
    a092306 = length . filter even . map (length . group) . ps 1 where
       ps x 0 = [[]]
       ps x y = [t:ts | t <- [x..y], ts <- ps t (y - t)]
    -- Reinhard Zumkeller, Dec 19 2013
  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i<1, 0,
           b(n, i-1, t) +add(b(n-i*j, i-1, 1-t), j=1..n/i)))
        end:
    a:= n-> b(n, n, 1):
    seq(a(n), n=0..50);  # Alois P. Heinz, Jan 29 2014
  • Mathematica
    f[n_] := Count[ Mod[ Length /@ Union /@ IntegerPartitions[n], 2], 0]; Table[ f[n], {n, 0, 49}] (* Robert G. Wilson v, Feb 16 2004, updated by Jean-François Alcover, Jan 29 2014 *)

Formula

a(n) = b(n, 1, 0, 1) with b(n, i, j, f) = if iReinhard Zumkeller, Feb 19 2004
G.f.: F(x)*G(x)/2, where F(x) = 1+Product(1-2*x^i, i=1..infinity) and G(x) = 1/Product(1-x^i, i=1..infinity).
a(n) = (A000041(n)+A104575(n))/2.
G.f. A(x) equals the main diagonal entries in the 2 X 2 matrix Product_{n >= 1} [1, x^n/(1 - x^n); x^n/(1 - x^n), 1] = [A(x), B(x); B(x), A(x)], where B(x) is the g.f. of A090794. - Peter Bala, Feb 10 2021

Extensions

More terms from Robert G. Wilson v, Feb 16 2004