cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092309 Sum of smallest parts (counted with multiplicity) of all partitions of n.

Original entry on oeis.org

1, 4, 7, 15, 19, 39, 46, 80, 106, 160, 201, 318, 390, 554, 729, 998, 1262, 1727, 2168, 2894, 3670, 4749, 5963, 7737, 9635, 12232, 15257, 19206, 23727, 29723, 36509, 45296, 55512, 68292, 83298, 102079, 123805, 150697, 182254, 220790, 265766
Offset: 1

Views

Author

Vladeta Jovovic, Feb 16 2004

Keywords

Examples

			Partitions of 4 are: [1,1,1,1], [1,1,2], [2,2], [1,3], [4]; thus a(4)=4*1+2*1+2*2+1*1+1*4=15.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(irem(n, i)=0, n, 0)
           +`if`(i>1, add(b(n-i*j, i-1), j=0..(n-1)/i), 0)
        end:
    a:= n-> b(n$2):
    seq(a(n), n=1..50);  # Alois P. Heinz, Feb 04 2016
  • Mathematica
    ss[n_]:=Module[{m=Min[n]},Select[n,#==m&]]; Table[Total[Flatten[ss/@ IntegerPartitions[n]]],{n,50}] (* Harvey P. Dale, Dec 16 2013 *)
    b[n_, i_] := b[n, i] = If[Mod[n, i] == 0, n, 0] + If[i > 1, Sum[b[n - i*j, i - 1], {j, 0, (n - 1)/i}], 0]; a[n_] := b[n, n]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)

Formula

G.f.: Sum(n*x^n/(1-x^n)*Product(1/(1-x^k), k = n .. infinity), n = 1 .. infinity).
a(n) ~ sqrt(2) * exp(Pi*sqrt(2*n/3)) / (4*Pi*sqrt(n)). - Vaclav Kotesovec, Jul 06 2019

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004