A092309 Sum of smallest parts (counted with multiplicity) of all partitions of n.
1, 4, 7, 15, 19, 39, 46, 80, 106, 160, 201, 318, 390, 554, 729, 998, 1262, 1727, 2168, 2894, 3670, 4749, 5963, 7737, 9635, 12232, 15257, 19206, 23727, 29723, 36509, 45296, 55512, 68292, 83298, 102079, 123805, 150697, 182254, 220790, 265766
Offset: 1
Examples
Partitions of 4 are: [1,1,1,1], [1,1,2], [2,2], [1,3], [4]; thus a(4)=4*1+2*1+2*2+1*1+1*4=15.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..9000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(irem(n, i)=0, n, 0) +`if`(i>1, add(b(n-i*j, i-1), j=0..(n-1)/i), 0) end: a:= n-> b(n$2): seq(a(n), n=1..50); # Alois P. Heinz, Feb 04 2016
-
Mathematica
ss[n_]:=Module[{m=Min[n]},Select[n,#==m&]]; Table[Total[Flatten[ss/@ IntegerPartitions[n]]],{n,50}] (* Harvey P. Dale, Dec 16 2013 *) b[n_, i_] := b[n, i] = If[Mod[n, i] == 0, n, 0] + If[i > 1, Sum[b[n - i*j, i - 1], {j, 0, (n - 1)/i}], 0]; a[n_] := b[n, n]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)
Formula
G.f.: Sum(n*x^n/(1-x^n)*Product(1/(1-x^k), k = n .. infinity), n = 1 .. infinity).
a(n) ~ sqrt(2) * exp(Pi*sqrt(2*n/3)) / (4*Pi*sqrt(n)). - Vaclav Kotesovec, Jul 06 2019
Extensions
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004