A092316 Sum of largest parts of all partitions of n into odd distinct parts.
1, 0, 3, 3, 5, 5, 7, 12, 14, 16, 18, 27, 29, 33, 42, 55, 59, 65, 78, 95, 110, 118, 137, 167, 188, 200, 236, 274, 303, 330, 376, 435, 485, 522, 591, 677, 741, 803, 903, 1022, 1115, 1210, 1345, 1505, 1650, 1784, 1964, 2201, 2393, 2578, 2843, 3143, 3409, 3685, 4034
Offset: 1
Examples
a(13) = 29 because the partitions of 13 into distinct odd parts are [13],[9,3,1] and [7,5,1], with sum of largest terms 13+9+7 = 29.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from Seiichi Manyama)
- Arnold Knopfmacher and Neville Robbins, Identities for the total number of parts in partitions of integers, Util. Math. 67 (2005), 9-18.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1 or i^2
`if`(t>n, 0, b(n-t, i-1)))(2*i-1) )) end: a:= n-> add(`if`(j::odd, j*b(n-j, (j-1)/2), 0), j=1..n): seq(a(n), n=1..55); # Alois P. Heinz, Jan 19 2022 -
Mathematica
nmax = 50; Rest[CoefficientList[Series[Sum[(2*k - 1)*x^(2*k - 1) * Product[1 + x^(2*j - 1), {j, 1, k - 1}], {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 28 2016 *)
Formula
G.f.: Sum_{n>=1} (2*n-1)*x^(2*n-1)*Product_{k=1..n-1} (1+x^(2*k-1)).
Extensions
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004