cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092316 Sum of largest parts of all partitions of n into odd distinct parts.

Original entry on oeis.org

1, 0, 3, 3, 5, 5, 7, 12, 14, 16, 18, 27, 29, 33, 42, 55, 59, 65, 78, 95, 110, 118, 137, 167, 188, 200, 236, 274, 303, 330, 376, 435, 485, 522, 591, 677, 741, 803, 903, 1022, 1115, 1210, 1345, 1505, 1650, 1784, 1964, 2201, 2393, 2578, 2843, 3143, 3409, 3685, 4034
Offset: 1

Views

Author

Vladeta Jovovic, Feb 15 2004

Keywords

Examples

			a(13) = 29 because the partitions of 13 into distinct odd parts are [13],[9,3,1] and [7,5,1], with sum of largest terms 13+9+7 = 29.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1 or i^2 `if`(t>n, 0, b(n-t, i-1)))(2*i-1) ))
        end:
    a:= n-> add(`if`(j::odd, j*b(n-j, (j-1)/2), 0), j=1..n):
    seq(a(n), n=1..55);  # Alois P. Heinz, Jan 19 2022
  • Mathematica
    nmax = 50; Rest[CoefficientList[Series[Sum[(2*k - 1)*x^(2*k - 1) * Product[1 + x^(2*j - 1), {j, 1, k - 1}], {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 28 2016 *)

Formula

G.f.: Sum_{n>=1} (2*n-1)*x^(2*n-1)*Product_{k=1..n-1} (1+x^(2*k-1)).
a(n) = 2 * A067619(n) - A000700(n). - Seiichi Manyama, Jan 19 2022

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004