cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092321 Sum of largest parts (counted with multiplicity) of all partitions of n.

Original entry on oeis.org

0, 1, 4, 8, 17, 26, 49, 69, 115, 164, 249, 343, 513, 686, 974, 1314, 1806, 2382, 3232, 4208, 5597, 7244, 9456, 12118, 15687, 19899, 25422, 32079, 40589, 50796, 63805, 79303, 98817, 122179, 151145, 185820, 228598, 279476, 341807, 416051, 506205, 613244, 742720
Offset: 0

Views

Author

Vladeta Jovovic, Feb 16 2004

Keywords

Examples

			Partitions of 4 are [1,1,1,1], [1,1,2], [2,2], [1,3], [4]; thus a(4) = 4*1 + 1*2 + 2*2 + 1*3 + 1*4 = 17.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, [1, 0],
          `if`(i<1, [0$2], b(n, i-1, t) +add((l->`if`(t, l,
           l+[0, l[1]*i*j]))(b(n-i*j, i-1, true)), j=1..n/i)))
        end:
    a:= n-> b(n$2, false)[2]:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jan 29 2014
  • Mathematica
    f[n_] := Block[{c = 2n, k = 2, p = IntegerPartitions[n]}, m = Max @@@ p; l = Length[p]; While[k < l, c = c + m[[k]]*Count[p[[k]], m[[k]]]; k++ ]; If[n == 1, 1, c]]; Table[ f[n], {n, 41}] (* Robert G. Wilson v, Feb 18 2004, updated by Jean-François Alcover, Jan 29 2014 *)
    nmax = 50; CoefficientList[Series[Sum[n*x^n/(1-x^n) * Product[1/(1 - x^k), {k, 1, n}], {n, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 06 2019 *)
    Join[{0},Table[Total[Flatten[First[Split[#]]&/@IntegerPartitions[n]]],{n,50}]] (* Harvey P. Dale, Oct 29 2019 *)

Formula

G.f.: Sum_{n>=1} (n*x^n/(1-x^n))*Product_{k=1..n} 1/(1-x^k).

Extensions

More terms from Robert G. Wilson v, Feb 18 2004