A092464 Numbers congruent to 4 or 9 mod 13.
4, 9, 17, 22, 30, 35, 43, 48, 56, 61, 69, 74, 82, 87, 95, 100, 108, 113, 121, 126, 134, 139, 147, 152, 160, 165, 173, 178, 186, 191, 199, 204, 212, 217, 225, 230, 238, 243, 251, 256, 264, 269, 277, 282, 290, 295, 303, 308, 316, 321, 329, 334, 342, 347, 355, 360
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Crossrefs
A127547 is a subsequence.
Programs
-
Mathematica
Select[Range[400],MemberQ[{4,9},Mod[#,13]]&] (* or *) Select[Range[400], PowerMod[#,2,13]==3&] (* Harvey P. Dale, Mar 05 2012 *)
Formula
From R. J. Mathar, Apr 20 2009: (Start)
a(n) = a(n-2) + 13 = a(n-1) + a(n-2) - a(n-3) = 13*n/2 - 13/4 - 3*(-1)^n/4.
G.f.: x*(4+5*x+4*x^2)/((1+x)*(x-1)^2). (End)
a(n) = 13*(n-1) - a(n-1), (with a(1)=4). - Vincenzo Librandi, Nov 17 2010
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(5*Pi/26)*Pi/13. - Amiram Eldar, Feb 27 2023
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 2*sin(5*Pi/26).
Product_{n>=1} (1 + (-1)^n/a(n)) = sin(3*Pi/13)*sec(5*Pi/26). (End)
Extensions
More terms from Ray Chandler, Mar 27 2004
Edited by N. J. A. Sloane, May 10 2007
Incorrect formula deleted by N. J. A. Sloane, Jun 16 2010
Comments