cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092464 Numbers congruent to 4 or 9 mod 13.

Original entry on oeis.org

4, 9, 17, 22, 30, 35, 43, 48, 56, 61, 69, 74, 82, 87, 95, 100, 108, 113, 121, 126, 134, 139, 147, 152, 160, 165, 173, 178, 186, 191, 199, 204, 212, 217, 225, 230, 238, 243, 251, 256, 264, 269, 277, 282, 290, 295, 303, 308, 316, 321, 329, 334, 342, 347, 355, 360
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Mar 25 2004

Keywords

Comments

Numbers k such that k^2 is congruent to 3 (modulo 13).

Crossrefs

A127547 is a subsequence.

Programs

  • Mathematica
    Select[Range[400],MemberQ[{4,9},Mod[#,13]]&] (* or *) Select[Range[400], PowerMod[#,2,13]==3&] (* Harvey P. Dale, Mar 05 2012 *)

Formula

From R. J. Mathar, Apr 20 2009: (Start)
a(n) = a(n-2) + 13 = a(n-1) + a(n-2) - a(n-3) = 13*n/2 - 13/4 - 3*(-1)^n/4.
G.f.: x*(4+5*x+4*x^2)/((1+x)*(x-1)^2). (End)
a(n) = 13*(n-1) - a(n-1), (with a(1)=4). - Vincenzo Librandi, Nov 17 2010
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(5*Pi/26)*Pi/13. - Amiram Eldar, Feb 27 2023
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 2*sin(5*Pi/26).
Product_{n>=1} (1 + (-1)^n/a(n)) = sin(3*Pi/13)*sec(5*Pi/26). (End)

Extensions

More terms from Ray Chandler, Mar 27 2004
Edited by N. J. A. Sloane, May 10 2007
Incorrect formula deleted by N. J. A. Sloane, Jun 16 2010