cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092477 Triangle read by rows: T(n,k) = (2^k - 1)^n, 1<=k<=n.

Original entry on oeis.org

1, 1, 9, 1, 27, 343, 1, 81, 2401, 50625, 1, 243, 16807, 759375, 28629151, 1, 729, 117649, 11390625, 887503681, 62523502209, 1, 2187, 823543, 170859375, 27512614111, 3938980639167, 532875860165503, 1, 6561, 5764801, 2562890625, 852891037441, 248155780267521, 67675234241018881, 17878103347812890625
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 26 2004

Keywords

Comments

T(n,1)=1; T(n,2)=A000244(n); T(n,n-1)=A086206(n); T(n,n)=A055601(n).
T(n,k) is the number of n X k binary matrices with no 0 rows. The triangular array becomes a rectangular array by lifting the restriction on k. [From Geoffrey Critzer, Dec 03 2009]
From Manfred Boergens, Jun 23 2024: (Start)
T(n,k) is the number of coverings of [n] by tuples (A_1,...,A_k) in P([n])^k, with P(.) denoting the power set.
For nonempty A_j see A218695.
For disjoint A_j see A089072.
For nonempty and disjoint A_j see A019538.
Lifting the restriction on k and swapping n,k gives A329943. (End)

Examples

			Triangle begins
 1
 1,9;
 1,27,343;
 1,81,2401,50625;
 1,243,16807,759375, 28629151 [_Geoffrey Critzer_, Dec 03 2009]
		

Crossrefs

Programs

  • Maple
    A092477 := proc(n,k)
        (2^k-1)^n ;
    end proc:
    seq(seq( A092477(n,k),k=1..n),n=1..12) ; # R. J. Mathar, Nov 18 2023
  • Mathematica
    Table[Table[(2^k - 1)^n, {k, 1, n}], {n, 1, 6}] // Grid (* Geoffrey Critzer, Dec 03 2009 *)

Extensions

More terms from Michel Marcus, Jun 23 2024