cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A090729 a(n) = 21a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 21.

Original entry on oeis.org

2, 21, 439, 9198, 192719, 4037901, 84603202, 1772629341, 37140612959, 778180242798, 16304644485799, 341619353958981, 7157701788652802, 149970118207749861, 3142214780574094279, 65836540273848229998
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 18 2004

Keywords

Comments

A Chebyshev T-sequence with Diophantine property.
a(n) gives the general (nonnegative integer) solution of the Pell equation a^2 - 437*b^2 =+4 with companion sequence b(n)=A092499(n), n>=0.

References

  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).

Crossrefs

Cf. A085985.
a(n)=sqrt(4 + 437*A092499(n)^2), n>=1, (Pell equation d=437, +4).
Cf. A077428, A078355 (Pell +4 equations).

Programs

  • Mathematica
    a[0] = 2; a[1] = 21; a[n_] := 21a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* Robert G. Wilson v, Jan 30 2004 *)
  • Sage
    [lucas_number2(n,21,1) for n in range(0,20)] # Zerinvary Lajos, Jun 27 2008

Formula

a(n) = S(n, 21) - S(n-2, 21) = 2*T(n, 21/2) with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. S(n, 21)=A092499(n+1). U-, resp. T-, are Chebyshev's polynomials of the second, resp. first, case. See A049310 and A053120.
a(n) = ap^n + am^n, with ap := (21+sqrt(437))/2 and am := (21-sqrt(437))/2.
G.f.: (2-21*x)/(1-21*x+x^2).

Extensions

Chebyshev and Pell comments from Wolfdieter Lang, Sep 10 2004

A212335 Expansion of 1/(1-22*x+22*x^2-x^3).

Original entry on oeis.org

1, 22, 462, 9681, 202840, 4249960, 89046321, 1865722782, 39091132102, 819048051361, 17160917946480, 359560228824720, 7533603887372641, 157846121406000742, 3307234945638642942, 69294087737005501041, 1451868607531476878920
Offset: 0

Views

Author

Bruno Berselli, Jun 12 2012

Keywords

Comments

Partial sums of A092499 (after 0).

Crossrefs

Cf. A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).

Programs

  • Magma
    m:=17; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-22*x+22*x^2-x^3)));
  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <1|-22|22>>^n. <<1, 22, 462>>)[1, 1]:
    seq(a(n), n=0..20);  # Alois P. Heinz, Jun 15 2012
  • Mathematica
    CoefficientList[Series[1/(1 - 22 x + 22 x^2 - x^3), {x, 0, 16}], x]
    LinearRecurrence[{22,-22,1},{1,22,462},20] (* Harvey P. Dale, Nov 04 2017 *)
  • Maxima
    makelist(coeff(taylor(1/(1-22*x+22*x^2-x^3), x, 0, n), x, n), n, 0, 16);
    
  • PARI
    Vec(1/(1-22*x+22*x^2-x^3)+O(x^17))
    

Formula

G.f.: 1/((1-x)*(1-21*x+x^2)).
a(n) = (((230-11*sqrt(437))*(21-sqrt(437))^n+(230+11*sqrt(437))*(21+sqrt(437))^n)/2^n-23)/437.
a(n) = a(-n-3) = 23*a(n-1)-23*a(n-2)+a(n-3).
a(n)*a(n+2) = a(n+1)*(a(n+1)-1).
Showing 1-2 of 2 results.