A092542 Table whose n-th row is constant and equal to n, read by antidiagonals alternately upwards and downwards.
1, 1, 2, 3, 2, 1, 1, 2, 3, 4, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9
Offset: 1
Examples
The table 1 1 1 1 1 ... 2 2 2 2 2 ... 3 3 3 3 3 ... 4 4 4 4 4 ... gives 1; 1 2; 3 2 1; 1 2 3 4; 5 4 3 2 1; 1 2 3 4 5 6;
References
- Amir D. Aczel, "The Mystery of the Aleph, Mathematics, the Kabbalah and the Search for Infinity", Barnes & Noble, NY 2000, page 112.
Links
- Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
- Eric Weisstein's MathWorld, Pairing functions
Crossrefs
Programs
-
Mathematica
Table[ Join[Range[2n - 1], Reverse@ Range[2n - 2]], {n, 8}] // Flatten (* Robert G. Wilson v, Sep 28 2006 *)
Formula
a(n) = ((-1)^t+1)*j/2-((-1)^t-1)*i/2, where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Dec 24 2012
Extensions
Name edited by Michel Marcus, Dec 14 2023
Comments