cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092605 Decimal expansion of e^(-1/2) or 1/sqrt(e).

Original entry on oeis.org

6, 0, 6, 5, 3, 0, 6, 5, 9, 7, 1, 2, 6, 3, 3, 4, 2, 3, 6, 0, 3, 7, 9, 9, 5, 3, 4, 9, 9, 1, 1, 8, 0, 4, 5, 3, 4, 4, 1, 9, 1, 8, 1, 3, 5, 4, 8, 7, 1, 8, 6, 9, 5, 5, 6, 8, 2, 8, 9, 2, 1, 5, 8, 7, 3, 5, 0, 5, 6, 5, 1, 9, 4, 1, 3, 7, 4, 8, 4, 2, 3, 9, 9, 8, 6, 4, 7, 6, 1, 1, 5, 0, 7, 9, 8, 9, 4, 5, 6, 0, 2, 6, 4, 2, 3
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 22 2004

Keywords

Comments

For x = e^(-1/2), the largest prime factor of a random integer n is equally likely to be above or below n^x. - Charles R Greathouse IV, May 25 2009
Siegel's conjecture: this constant gives the density of regular primes among all the primes (see Ribenboim and Siegel). - Stefano Spezia, Apr 22 2025

Examples

			0.6065306597126334...
		

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 225.
  • C. L. Siegel, Zu zwei Bemerkungen Kummers. Nachr. Akad. d. Wiss. Göttingen, Math. Phys. Kl., II, 1964, 51-62. Reprinted in Gesammelte Abhandlungen (edited by K. Chandrasekharan and H. Maas), Vol. III, 436-442. Springer-Verlag, Berlin, 1966.

Crossrefs

Programs

Formula

Equals Sum_{k>=0} (-1)^k/(2^k * k!) = Sum_{k>=0} (-1)^k/A000165(k). - Amiram Eldar, Aug 15 2020
From Peter Bala, Jan 16 2022; (Start)
Equals 16*Sum_{n >= 0} (-1)^n*n^2/((4*n^2 - 1)*(4*n^2 - 9)*(2^n)*n!).
Equals 8*Sum_{n >= 0} (-1)^n/(p(n)*p(n+1)*(2^n)*n!), where p(n) = 4*n^2 + 8*n + 1.
Equals 48*Sum_{n >= 0} (-1)^n/(q(n)*q(n+1)*(2^n)*n!), where q(n) = 8*n^3 + 36*n^2 + 34*n + 1. (End)
Equals i^(i/Pi), where i denotes the imaginary unit. - Stefano Spezia, Mar 01 2025
Equals 1 - A290506. - Amiram Eldar, Apr 22 2025