cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A038034 Number of compositions (ordered partitions) of 1 into {1/1, 1/2, 1/3, ..., 1/n}.

Original entry on oeis.org

1, 2, 3, 7, 8, 52, 53, 288, 1209, 5247, 5248, 71395, 71396, 375779, 6957533, 52310862, 52310863, 1152622553, 1152622554, 45575902465, 1296407854551, 1580527987951, 1580527987952, 73245316681199, 584407520822198, 639887219617512, 11355804443049274, 516959218512416104, 516959218512416105, 29213061562205847736, 29213061562205847737, 886912328033731357358, 31286298736622399674197, 31349361777225437765677
Offset: 1

Views

Author

Christian G. Bower, Jun 15 1998

Keywords

Comments

a(n) = number of Egyptian fractions 1 = 1/x_1 + ... + 1/x_k (for any k), with max{x_i}<=n.

Examples

			a(4) = 7 since there are seven compositions into parts {1/1, 1/2, 1/3, 1/4}:
1 = 1/1, 1 = 1/2 + 1/2, 1 = 1/3 + 1/3 + 1/3, 1 = 1/2 + 1/4 + 1/4, 1 = 1/4 + 1/2 + 1/4, 1 = 1/4 + 1/4 + 1/2, and 1 = 1/4 + 1/4 + 1/4 + 1/4.
		

Crossrefs

Formula

a(n) = Sum_{i=1..n} A092667(i).
a(p) = a(p-1) + 1 for p prime. - Chai Wah Wu, Dec 27 2024

Extensions

More terms from Max Alekseyev, Mar 02 2004

A092669 a(n) = number of Egyptian fractions 1 = 1/x_1 + ... + 1/x_k (for any k), 0

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 3, 0, 0, 5, 0, 11, 0, 0, 0, 19, 0, 0, 0, 73, 0, 86, 0, 0, 163, 0, 203, 286, 0, 0, 0, 803, 0, 1399, 0, 0, 2723, 0, 0, 4870, 0, 0, 0, 8789, 0, 13937, 14987, 42081, 0, 0, 0, 85577, 0, 0, 159982, 0, 117889, 437874, 0, 0, 0, 818640, 0
Offset: 1

Views

Author

Max Alekseyev, Mar 02 2004

Keywords

Comments

For a given n, the Mathematica program uses backtracking to count the solutions. The solutions can be printed by uncommenting the print statement. It is very time-consuming for large n. A092671 gives the n that yield a(n) > 0. - T. D. Noe, Mar 26 2004

Examples

			a(6) = 1 since there is the only fraction 1 = 1/2+1/3+1/6.
		

Crossrefs

Programs

  • Mathematica
    n=20; try2[lev_, s_] := Module[{nmim, nmax, si, i}, AppendTo[soln, 0]; If[lev==1, nmin=2, nmin=1+soln[[ -2]]]; nmax=n-1; Do[If[iT. D. Noe, Mar 26 2004 *)

Formula

a(n) = A092670(n) - A092670(n-1).

Extensions

More terms from T. D. Noe, Mar 26 2004
More terms from T. Suzuki (suzuki(AT)scio.co.jp), Nov 24 2006

A092666 a(n) = number of Egyptian fractions 1 = 1/x_1 + ... + 1/x_k (for any k), with 0 < x_1 <= ... <= x_k = n.

Original entry on oeis.org

1, 1, 1, 2, 1, 7, 1, 10, 10, 26, 1, 107, 1, 83, 375, 384, 1, 1418, 1, 4781, 7812, 1529, 1, 33665, 9789, 4276, 27787, 168107, 1, 584667, 1, 586340, 1177696, 52334, 5285597, 14746041, 1, 218959, 13092673, 84854683, 1, 279357910, 1, 491060793, 2001103921
Offset: 1

Views

Author

Max Alekseyev, Mar 02 2004

Keywords

Examples

			a(4) = 2 since there are two fractions 1=1/2+1/4+1/4 and 1=1/4+1/4+1/4+1/4.
		

Crossrefs

Formula

a(n) = A020473(n) - A020473(n-1).
a(n) = 1 if n is prime.

Extensions

Edited by Max Alekseyev, May 05 2010

A178097 Partial sums of A038034.

Original entry on oeis.org

1, 3, 6, 13, 21, 73, 126, 414, 1623, 6870, 12118, 83513, 154909, 530688, 7488221, 59799083, 112109946, 1264732499, 2417355053, 47993257518, 1344401112069, 2924929100020, 4505457087972, 77750773769171, 662158294591369
Offset: 1

Views

Author

Jonathan Vos Post, May 20 2010

Keywords

Comments

Partial sums of number of ordered partitions of 1 into {1, 1/2, 1/3, ..., 1/n}. The subsequence of primes in the partial sum begins: 3, 13, 73, 59799083, 2417355053.

Examples

			a(19) = 1 + 2 + 3 + 7 + 8 + 52 + 53 + 288 + 1209 + 5247 + 5248 + 71395 + 71396 + 375779 + 6957533 + 52310862 + 52310863 + 1152622553 + 1152622554.
		

Crossrefs

Formula

a(n) = SUM[i=1..n] A038034(i) = SUM[i=1..n] SUM[j=1..i] A092667(j).
Showing 1-4 of 4 results.