cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A178097 Partial sums of A038034.

Original entry on oeis.org

1, 3, 6, 13, 21, 73, 126, 414, 1623, 6870, 12118, 83513, 154909, 530688, 7488221, 59799083, 112109946, 1264732499, 2417355053, 47993257518, 1344401112069, 2924929100020, 4505457087972, 77750773769171, 662158294591369
Offset: 1

Views

Author

Jonathan Vos Post, May 20 2010

Keywords

Comments

Partial sums of number of ordered partitions of 1 into {1, 1/2, 1/3, ..., 1/n}. The subsequence of primes in the partial sum begins: 3, 13, 73, 59799083, 2417355053.

Examples

			a(19) = 1 + 2 + 3 + 7 + 8 + 52 + 53 + 288 + 1209 + 5247 + 5248 + 71395 + 71396 + 375779 + 6957533 + 52310862 + 52310863 + 1152622553 + 1152622554.
		

Crossrefs

Formula

a(n) = SUM[i=1..n] A038034(i) = SUM[i=1..n] SUM[j=1..i] A092667(j).

A020473 Egyptian fractions: number of partitions of 1 into reciprocals of positive integers <= n.

Original entry on oeis.org

1, 2, 3, 5, 6, 13, 14, 24, 34, 60, 61, 168, 169, 252, 627, 1011, 1012, 2430, 2431, 7212, 15024, 16553, 16554, 50219, 60008, 64284, 92071, 260178, 260179, 844846, 844847, 1431187, 2608883, 2661217, 7946814, 22692855, 22692856, 22911815, 36004488, 120859171
Offset: 1

Views

Author

Keywords

Comments

Number of ways to represent 1 = Sum_{k=1..n} b(k)/k, where the b(k) >= 0. - Franklin T. Adams-Watters, Aug 01 2006

Crossrefs

Programs

  • Mathematica
    Table[Length[IntegerPartitions[1, All, 1/Range[n]]], {n, 1, 20}] (* Ben Branman, Apr 21 2012 *)

Formula

a(n) = Sum(A092666(i), i=1..n).
For prime p, a(p) = a(p-1) + 1. - Max Alekseyev, May 07 2012

A037268 Sum of reciprocals of digits = 1.

Original entry on oeis.org

1, 22, 236, 244, 263, 326, 333, 362, 424, 442, 623, 632, 2488, 2666, 2848, 2884, 3366, 3446, 3464, 3636, 3644, 3663, 4288, 4346, 4364, 4436, 4444, 4463, 4634, 4643, 4828, 4882, 6266, 6336, 6344, 6363, 6434, 6443, 6626, 6633, 6662, 8248, 8284, 8428, 8482, 8824
Offset: 1

Views

Author

Keywords

Comments

This sequence has 1209 terms.
Intersection of A037264 and A034708: A214949(a(n))*A214950(a(n))*A168046(a(n)) = 1. - Reinhard Zumkeller, Aug 02 2012

Crossrefs

Subsequence of A214959.

Programs

  • Haskell
    a037268 n = a037268_list !! (n-1)
    a037268_list = filter ((== 1) . a168046) $
                          takeWhile (<= 999999999) a214959_list
    -- Reinhard Zumkeller, Aug 02 2012
    
  • Maple
    A037268 := proc(n) option remember: local d,k: if(n=1)then return 1: fi: for k from procname(n-1)+1 do d:=convert(k,base,10): if(not member(0,d) and add(1/d[j],j=1..nops(d))=1)then return k: fi: od: end: seq(A037268(n),n=1..50); # Nathaniel Johnston, May 28 2011
  • Mathematica
    Select[Range[10000],Total[1/(IntegerDigits[#]/.(0->1))]==1&] (* Harvey P. Dale, Jul 23 2025 *)
  • PARI
    lista(nn) = {for (n=1, nn, d = digits(n); if (vecmin(d) && (sum(k=1, #d, 1/d[k])==1), print1(n, ", ")););} \\ Michel Marcus, Jul 06 2015
    
  • Python
    from fractions import Fraction
    def ok(n):
      sn = str(n)
      return False if '0' in sn else sum(Fraction(1, int(d)) for d in sn) == 1
    def aupto(limit): return [m for m in range(1, limit+1) if ok(m)]
    print(aupto(8824)) # Michael S. Branicky, Jan 22 2021

Extensions

More terms from Christian G. Bower, Jun 15 1998
Two missing terms inserted by Nathaniel Johnston, May 28 2011

A092670 a(n) = number of Egyptian fractions 1 = 1/x_1 + ... + 1/x_k (for any k), 0

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 6, 6, 6, 11, 11, 22, 22, 22, 22, 41, 41, 41, 41, 114, 114, 200, 200, 200, 363, 363, 566, 852, 852, 852, 852, 1655, 1655, 3054, 3054, 3054, 5777, 5777, 5777, 10647, 10647, 10647, 10647, 19436, 19436, 33373, 48360, 90441
Offset: 1

Views

Author

Max Alekseyev, Mar 02 2004

Keywords

Examples

			a(6)=2 since there are two fractions 1=1/1 and 1=1/2+1/3+1/6.
		

Crossrefs

Formula

a(n)=Sum(A092669(i), i=1..n)

Extensions

More terms from T. Suzuki (suzuki(AT)scio.co.jp), Nov 24 2006

A092667 a(n) = number of Egyptian fractions 1 = 1/x_1 + ... + 1/x_k (for any k), with max{x_i}=n.

Original entry on oeis.org

1, 1, 1, 4, 1, 44, 1, 235, 921, 4038, 1, 66147, 1, 304383, 6581754, 45353329, 1, 1100311690, 1, 44423279911, 1250831952086, 284120133400, 1, 71664788693247, 511162204140999, 55479698795314, 10715917223431762, 505603414069366830, 1, 28696102343693431631, 1, 857699266471525509621, 30399386408588668316839, 63063040603038091480
Offset: 1

Views

Author

Max Alekseyev, Mar 02 2004

Keywords

Examples

			a(4) = 4 since there are four fractions 1=1/2+1/4+1/4, 1=1/4+1/2+1/4, 1=1/4+1/4+1/2 and 1=1/4+1/4+1/4+1/4.
		

Crossrefs

Formula

a(n) = A038034(n) - A038034(n-1).
a(n) = 1 if n is prime.

A378270 Number of partitions of 1 into {1/1^2, 1/2^2, 1/3^2, ..., 1/n^2}.

Original entry on oeis.org

1, 2, 3, 7, 8, 58, 59, 259, 664, 3427, 3428, 73351, 73352, 298785, 7060868, 43070304, 43070305, 901194373, 901194374, 32808600352, 1204438945226, 2459587779124, 2459587779125, 96010353352980
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 21 2024

Keywords

Comments

From David A. Corneth, Nov 24 2024: (Start)
Primes n/2 < p <= n occur in exactly one solution namely (p^2) * (1/p^2).
Proof: If the numerator k of k/p^2 is less than p^2 then p divides the denominator of the sum of the Egyptian fractions as p divides no other number <= n. But the goal is have sum 1 i.e. denominator 1 so p cannot be a divisor of the denominator. Consequently this can be reduced to "Number of partitions of 1 into {1/1^2, 1/2^2, ..., 1/(n/2)^2, ..., 1/n^2}" plus number of primes n/2 < p <= n. The denominators for the first part can be cleared turning this into a partitioning problem of positive integers. (End)

Examples

			a(4) = 7 because we have 16 * (1/16) = 12 * (1/16) + 1/4 = 8 * (1/16) + 2 * (1/4) = 4 * (1/16) + 3 * (1/4) = 9 * (1/9) = 4 * (1/4) = 1.
From _David A. Corneth_, Nov 24 2024: (Start)
To find a(12) we can rewrite the problem as "Number of partitions of 1 into {1/1^2, 1/2^2, 1/3^2, 1/4^2, 1/5^2, 1/6^2, 1/8^2, 1/9^2, 1/10^2, 1/12^2} + |{7, 11}|". The lcm of (1^2, 2^2, 3^2, 4^2, 5^2, 6^2, 8^2, 9^2, 10^2, 12^2) is 129600. So this comes a partition problem of (number of partitions of 129600 into parts 129600, 32400, 14400, 8100, 5184, 3600, 2025, 1600, 1296, 900) + |{7, 11}|. (End)
		

Crossrefs

Formula

a(p) = a(p-1) + 1 for prime p. - David A. Corneth, Nov 22 2024

Extensions

a(12)-a(21) from David A. Corneth, Nov 22 2024
a(22)-a(24) from Jinyuan Wang, Dec 11 2024

A378271 Number of partitions of 1 into {1/1^3, 1/2^3, 1/3^3, ..., 1/n^3}.

Original entry on oeis.org

1, 2, 3, 11, 12, 435, 436, 6748, 42360, 1252676, 1252677, 302302546, 302302547
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 21 2024

Keywords

Examples

			a(4) = 11 because we have 64 * (1/64) = 56 * (1/64) + 1/8 = 48 * (1/64) + 2 * (1/8) = 40 * (1/64) + 3 * (1/8) = 32 * (1/64) + 4 * (1/8) = 24 * (1/64) + 5 * (1/8) = 16 * (1/64) + 6 * (1/8) = 8 * (1/64) + 7 * (1/8) = 27 * (1/27) = 8 * (1/8) = 1.
		

Crossrefs

Formula

a(p) = a(p-1) + 1 for prime p. - Jinyuan Wang, Dec 11 2024

Extensions

a(9)-a(13) from Jinyuan Wang, Dec 11 2024

A378842 Number of compositions (ordered partitions) of n into reciprocals of positive integers <= n.

Original entry on oeis.org

1, 1, 5, 154, 127459, 1218599617, 2319241469466200, 32824171395278825785183, 115384552858168166552304749413033, 22529589324775724210737089575811718669447945, 1255772217551224641521320538899160332818484462756697922572, 885355014578065534254256068634855343582928219947780981811219956595305584
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 09 2024

Keywords

Examples

			a(2) = 5 because we have [1/2, 1/2, 1/2, 1/2], [1/2, 1/2, 1], [1/2, 1, 1/2], [1, 1/2, 1/2] and [1, 1].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, r) option remember; `if`(r=0, 1,
          add(`if`(r*j<1, 0, b(n, r-1/j)), j=1..n))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..10);  # Alois P. Heinz, Dec 12 2024
  • Python
    from functools import lru_cache
    from fractions import Fraction
    def A378842(n):
        @lru_cache(maxsize=None)
        def f(r): return 1 if r==0 else sum(f(r-Fraction(1,j)) for j in range(int(Fraction(1,r))+(r.numerator!=1),n+1))
        return f(n) # Chai Wah Wu, Dec 14 2024

Extensions

More terms from Alois P. Heinz, Dec 12 2024

A378269 Number of partitions of 1 into {1/1, 1/3, 1/5, ..., 1/(2*n-1)}.

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 9, 28, 29, 30, 90, 91, 150, 294, 295, 296, 659, 2818, 2819, 4815, 4816, 4817, 26648, 26649, 38880, 55745, 55746, 247660, 322628, 322629, 322630, 1942493, 7597991, 7597992
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 21 2024

Keywords

Examples

			a(5) = 7 because we have 9 * (1/9) = 6 * (1/9) + 1/3 = 3 * (1/9) + 2 * (1/3) = 7 * (1/7) = 5 * (1/5) = 3 * (1/3) = 1.
		

Crossrefs

Formula

If 2*n-1 is prime, then a(n) = a(n-1) + 1. - Chai Wah Wu, Dec 26 2024

Extensions

a(20)-a(34) from Jinyuan Wang, Dec 11 2024

A379528 Number of compositions (ordered partitions) of 1 into {1/1^2, 1/2^2, 1/3^2, ..., 1/n^2}.

Original entry on oeis.org

1, 2, 3, 97, 98, 40917543, 40917544, 2901109178066823, 81221415992592163051371926, 373220766236315864054296758124337507430, 373220766236315864054296758124337507431
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 24 2024

Keywords

Crossrefs

Formula

a(p) = a(p-1) + 1 for p prime. - Chai Wah Wu, Dec 27 2024

Extensions

a(6)-a(11) from Alois P. Heinz, Dec 26 2024
Showing 1-10 of 13 results. Next