cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A214949 Numerator of sum of reciprocals of all nonzero digits of n in decimal representation.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 3, 1, 5, 3, 7, 2, 9, 5, 11, 1, 4, 5, 2, 7, 8, 1, 10, 11, 4, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 1, 6, 7, 8, 9, 2, 11, 12, 13, 14, 1, 7, 2, 1, 5, 11, 1, 13, 7, 5, 1, 8, 9, 10, 11, 12, 13, 2, 15, 16
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 02 2012

Keywords

Crossrefs

Cf. A214950 (denominators).

Programs

  • Haskell
    import Data.Ratio ((%), numerator)
    a214949 = f 0 where
       f y 0 = numerator y
       f y x = f (y + if d == 0 then 0 else 1 % d) x'
               where (x',d) = divMod x 10
    
  • Mathematica
    nsr[n_] := Numerator[Total[1/Select[IntegerDigits[n], # > 0 &]]]; nsr /@ Range[0, 79] (* Jayanta Basu, Jul 13 2013 *)
  • PARI
    a(n) = my(d=digits(n)); numerator(sum(k=1, #d, if (d[k], 1/d[k]))); \\ Michel Marcus, Jan 26 2022

Formula

a(A037264(n)) = a(A037268(n)) = a(A214958(n)) = a(A214959(n)) = 1;
a(n) = a(A004719(n)).

A214950 Denominator of sum of reciprocals of all nonzero digits of n in decimal representation.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 2, 1, 6, 4, 10, 3, 14, 8, 18, 3, 3, 6, 3, 12, 15, 2, 21, 24, 9, 4, 4, 4, 12, 2, 20, 12, 28, 8, 36, 5, 5, 10, 15, 20, 5, 30, 35, 40, 45, 6, 6, 3, 2, 12, 30, 3, 42, 24, 18, 7, 7, 14, 21, 28, 35, 42
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 02 2012

Keywords

Crossrefs

Cf. A214949 (numerators).

Programs

  • Haskell
    import Data.Ratio ((%), denominator)
    a214950 = f 0 where
       f y 0 = denominator y
       f y x = f (y + if d == 0 then 0 else 1 % d) x'
               where (x',d) = divMod x 10
    
  • Mathematica
    dsr[n_] := Denominator[Total[1/Select[IntegerDigits[n], # > 0 &]]]; dsr /@ Range[0, 76] (* Jayanta Basu, Jul 13 2013 *)
  • PARI
    a(n) = my(d=digits(n)); denominator(sum(k=1, #d, if (d[k], 1/d[k]))); \\ Michel Marcus, Jan 26 2022

Formula

a(A034708(n)) = a(A037268(n)) = a(A214957(n)) = a(A214959(n)) = 1;
a(n) = a(A004719(n)).

A214959 Numbers for which the sum of reciprocals of nonzero digits = 1.

Original entry on oeis.org

1, 10, 22, 100, 202, 220, 236, 244, 263, 326, 333, 362, 424, 442, 623, 632, 1000, 2002, 2020, 2036, 2044, 2063, 2200, 2306, 2360, 2404, 2440, 2488, 2603, 2630, 2666, 2848, 2884, 3026, 3033, 3062, 3206, 3260, 3303, 3330, 3366, 3446, 3464, 3602, 3620, 3636
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 02 2012

Keywords

Comments

Intersection of A214957 and A214958: A214949(a(n))*A214950(a(n)) = 1.

Crossrefs

Cf. A037268 (subsequence).

Programs

  • Haskell
    import Data.Ratio ((%), numerator, denominator)
    a214959 n = a214959_list !! (n-1)
    a214959_list = [x | x <- [0..], f x 0] where
       f 0 v = numerator v == 1 && denominator v == 1
       f u v | d > 0     = f u' (v + 1 % d)
             | otherwise = f u' v  where (u',d) = divMod u 10
    
  • Magma
    SumReciprocalsDigits:=func; [n: n in [1..3636] | IsOne(SumReciprocalsDigits(n))]; // Bruno Berselli, Aug 02 2012
  • Mathematica
    idnQ[n_]:=Total[1/Select[IntegerDigits[n],#>0&]]==1; Select[Range[ 4000],idnQ] (* Harvey P. Dale, Dec 08 2012 *)

A037265 Integers arising from A037264.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 2, 2, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

The remaining terms are all 1.

Crossrefs

Cf. A037264.

Extensions

More terms from Erich Friedman.

A091784 Numbers n with digits in nondecreasing order such that sum of the reciprocal of digits is an integer.

Original entry on oeis.org

1, 11, 22, 111, 122, 236, 244, 333, 1111, 1122, 1236, 1244, 1333, 2222, 2488, 2666, 3366, 3446, 4444, 11111, 11122, 11236, 11244, 11333, 12222, 12488, 12666, 13366, 13446, 14444, 22236, 22244, 22333, 26999, 28888, 33999, 34688, 36666, 44488, 44666, 55555, 111111, 111122
Offset: 1

Views

Author

Amarnath Murthy, Feb 17 2004

Keywords

Comments

236 is a member and 263, 326, 362, 623, 632 which are digit permutations of 236 are not included (unlike A037268). Subsidiary sequences: (1) Sum of the reciprocals of all n-digit members. (2) Let the terms with reciprocal sum n be arranged in nondecreasing order. (i) The n-th term in the above sequence (2). (ii) The number of digits in this term of (i).
Subsequence of A009994. - David A. Corneth, Sep 05 2016

Examples

			236 is a member as 1/2 + 1/3 +1/6 = 1.
		

Crossrefs

Programs

  • Mathematica
    Do[l = IntegerDigits[n]; If[Intersection[l, {0}] == {} && IntegerQ[Plus @@ Map[(1/#)&, l]] && Sort[l] == l, Print[n]], {n, 1, 10^5}] (* Ryan Propper, Aug 27 2005 *)
    Select[Range[50000],Min[Differences[IntegerDigits[#]]]>=0&&IntegerQ[ Total[ 1/IntegerDigits[#]]]&] (* Harvey P. Dale, Aug 22 2016 *)
  • PARI
    is(n)=my(d=digits(n), v=vecsort(d),s); if(d==v, s=sum(i=1,#d,1/d[i]); s==s\1, 0) \\ David A. Corneth, Sep 06 2016
    
  • PARI
    getNDigitTerms(n)=my(v=List(),t); forvec(x=vector(8,i,[0,n]), my(u=vector(n,i,1),X=concat(x,n)); for(i=2,9, for(j=X[i-1]+1, X[i],u[j]=i)); if(denominator(sum(i=1,#u,1/u[i]))==1, listput(v,fromdigits(u))),1); Set(v) \\ Charles R Greathouse IV, Sep 06 2016

Extensions

More terms from Ryan Propper, Aug 27 2005
Name corrected by David A. Corneth, Sep 05 2016

A309654 Numbers k such that k multiplied by the sum of reciprocals of digits is the digit reversal of k.

Original entry on oeis.org

1, 22, 333, 424, 864, 3663, 4444, 6336, 39993, 46664, 48484, 55555, 64646, 66366, 84448, 88288, 93939, 362436, 488884, 666666, 848848, 884488, 6699966, 6886886, 6969696, 7777777, 8686868, 8866688, 8884888, 9669669, 9993999, 18181818, 26666664, 36484836
Offset: 1

Views

Author

Stéphane Rézel, Aug 11 2019

Keywords

Comments

Integers with at least one 0 digit cannot be terms. There is no other palindrome after 999999999, but is the sequence complete? The non-palindromic numbers in the sequence are 864, 362436, 18181818, 26666664, 36484836, 48363648 and 1666516665, in which zero, seven and nine do not appear as a digit. These non-palindromes are multiples of 3 and have a multiple of 6 as the sum of their digits.
The sequence is finite because the sum of the reciprocals of the digits of every zeroless number greater than 10^81-1 exceeds 9, while the ratio R(n)/n is always smaller than 9. a(43) > 10^13, if it exists. - Giovanni Resta, Aug 12 2019

Examples

			864 is in the sequence because 864 * (1/8 + 1/6 + 1/4) = 468, the digit reversal of 864.
		

Crossrefs

Cf. A037268.

Programs

  • Magma
    [k:k in [1..4000000]| not 0 in Set(Intseq(k))  and k*(&+[1/Intseq(k)[i]:i in [1..#Intseq(k)]]) eq Seqint(Reverse(Intseq(k)))]; // Marius A. Burtea, Aug 11 2019
  • Mathematica
    Select[Range[365*10^5],#*Total[1/IntegerDigits[#]]==IntegerReverse[#]&]//Quiet (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 09 2020 *)
  • PARI
    isok(k) = my(d=digits(k)); if (vecmin(d), k*sum(i=1, #d, 1/d[i]) == fromdigits(Vecrev(d))); \\ Michel Marcus, Aug 11 2019
    

A091783 Numbers with digits in nondecreasing order such that sum of the reciprocals of the digits is 1.

Original entry on oeis.org

1, 22, 236, 244, 333, 2488, 2666, 3366, 3446, 4444, 26999, 28888, 33999, 34688, 36666, 44488, 44666, 55555, 366999, 368888, 446999, 448888, 466688, 666666, 3999999, 4688999, 4888888, 6666999, 6668888, 7777777, 66999999, 68888999, 88888888, 999999999
Offset: 1

Views

Author

Amarnath Murthy, Feb 17 2004

Keywords

Comments

236 is a member but 263, 326, 362, 623, 632 which are digit permutations of 236 are not included (unlike A037268).
By definition, this is a subsequence of A052382 (zeroless numbers). - Michel Marcus, Jul 06 2015

Examples

			236 is a member as 1/2 + 1/3 + 1/6 = 1.
		

Crossrefs

Programs

  • Maple
    F:= proc(t,ns) option remember;
       local n0, k,r;
       if ns = [] then
          if t = 0 then return {[]}
          else return {}
          fi;
       fi;
       n0:= ns[1];
       `union`(seq(map(r -> [k,op(r)], procname(t - k/n0, ns[2..-1])),k=0..floor(t*n0)));
    end proc:
    g:= proc(t) local L,i; L:= [seq(i$t[i],i=1..9)]; add(L[i]*10^(nops(L)-i),i=1..nops(L)) end proc:
    sort(convert(map(g,F(1,[$1..9])),list)); # Robert Israel, Jul 06 2015
  • PARI
    lista(nn) = {for (n=1, nn, d = digits(n); if (vecmin(d) && (vecsort(d)==d) && (sum(k=1, #d, 1/d[k])==1), print1(n, ", ")););} \\ Michel Marcus, Jul 06 2015

Extensions

More terms from Sam Handler (sam_5_5_5_0(AT)yahoo.com), Apr 17 2004
Incorrect term 39999 corrected to 33999 by Thomas Oléron Evans, Jul 06 2015

A239685 Prime numbers for which the sum of reciprocals of nonzero digits equals 1.

Original entry on oeis.org

263, 2063, 4463, 4643, 6203, 20063, 26003, 60443, 62003, 64403, 68483, 69929, 86843, 88463, 88643, 92699, 200063, 260003, 260999, 296099, 296909, 400643, 406403, 406883, 446003, 449699, 460403, 464003, 464999, 468803, 488603, 494699, 496499, 496949, 499649
Offset: 1

Views

Author

Michel Lagneau, Mar 24 2014

Keywords

Comments

Primes in A214959.
Property of the sequence: a(n) == 3 or 9 (mod 10). If n contains nonzero digits, each number > 263 contains at least two identical digits, and the subsequence of the corresponding sum of reciprocals of digits (primes in A037268) is finite.

Examples

			2063 is in the sequence because 1/2 + 1/6 + 1/3 = 1.
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=500000:for m from 1 to nn do:n:=ithprime(m):y:=convert(n,base,10):n2:=nops(y):s:=0:for i from 1 to n2 do: if y[i]<>0 then s:=s+1/y[i]:else fi:od:if s=1 then printf(`%d, `,n):else fi:od:
  • Mathematica
    Select[Prime[Range[42000]],Total[1/Select[IntegerDigits[#],#!=0&]]==1&] (* Harvey P. Dale, May 31 2019 *)
Showing 1-8 of 8 results.