A037268 Sum of reciprocals of digits = 1.
1, 22, 236, 244, 263, 326, 333, 362, 424, 442, 623, 632, 2488, 2666, 2848, 2884, 3366, 3446, 3464, 3636, 3644, 3663, 4288, 4346, 4364, 4436, 4444, 4463, 4634, 4643, 4828, 4882, 6266, 6336, 6344, 6363, 6434, 6443, 6626, 6633, 6662, 8248, 8284, 8428, 8482, 8824
Offset: 1
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..1209 (full sequence)
Programs
-
Haskell
a037268 n = a037268_list !! (n-1) a037268_list = filter ((== 1) . a168046) $ takeWhile (<= 999999999) a214959_list -- Reinhard Zumkeller, Aug 02 2012
-
Maple
A037268 := proc(n) option remember: local d,k: if(n=1)then return 1: fi: for k from procname(n-1)+1 do d:=convert(k,base,10): if(not member(0,d) and add(1/d[j],j=1..nops(d))=1)then return k: fi: od: end: seq(A037268(n),n=1..50); # Nathaniel Johnston, May 28 2011
-
Mathematica
Select[Range[10000],Total[1/(IntegerDigits[#]/.(0->1))]==1&] (* Harvey P. Dale, Jul 23 2025 *)
-
PARI
lista(nn) = {for (n=1, nn, d = digits(n); if (vecmin(d) && (sum(k=1, #d, 1/d[k])==1), print1(n, ", ")););} \\ Michel Marcus, Jul 06 2015
-
Python
from fractions import Fraction def ok(n): sn = str(n) return False if '0' in sn else sum(Fraction(1, int(d)) for d in sn) == 1 def aupto(limit): return [m for m in range(1, limit+1) if ok(m)] print(aupto(8824)) # Michael S. Branicky, Jan 22 2021
Extensions
More terms from Christian G. Bower, Jun 15 1998
Two missing terms inserted by Nathaniel Johnston, May 28 2011
Comments