A092691 a(n) = n! * Sum_{k=1..floor(n/2)} 1/(2k).
0, 0, 1, 3, 18, 90, 660, 4620, 42000, 378000, 4142880, 45571680, 586776960, 7628100480, 113020427520, 1695306412800, 28432576972800, 483353808537600, 9056055981772800, 172065063653683200, 3562946373482496000, 74821873843132416000, 1697172166720622592000
Offset: 0
Keywords
Examples
a(4)=4!*(1/2+1/4)=18, a(5)=5!*(1/2+1/4)=90.
References
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, Exercise 3.3.13.
Links
- N. J. A. Sloane and T. D. Noe, Table of n, a(n) for n = 0..200
Programs
-
Mathematica
nn = 20; Range[0, nn]! CoefficientList[ D[Series[(1 - x^2)^(-y/2) ((1 + x)/(1 - x))^(1/2), {x, 0, nn}], y] /. y -> 1, x] (* Geoffrey Critzer, Aug 27 2012 *)
-
PARI
a(n)=if(n<0,0,n!*sum(k=1,n\2,1/k)/2)
-
PARI
{a(n)=if(n<0, 0, n!*polcoeff( log(1-x^2+x*O(x^n))/(2*x-2), n))}
Formula
a(2n+1) = (2n+1)*a(2n).
From Vladeta Jovovic, Mar 06 2004: (Start)
a(n) = n!*(Psi(floor(n/2)+1)+gamma)/2.
E.g.f.: log(1-x^2)/(2*x-2). (End)
a(n) = n!/2*h(floor(n/2)), where h(n) = Sum_{k=1..n} 1/k. - Gary Detlefs, Jul 19 2011
Comments