A092810 Binomial transform of a Jacobsthal trisection.
1, 6, 54, 486, 4374, 39366, 354294, 3188646, 28697814, 258280326, 2324522934, 20920706406, 188286357654, 1694577218886, 15251194969974, 137260754729766, 1235346792567894, 11118121133111046, 100063090197999414, 900567811781994726, 8105110306037952534
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (9).
Crossrefs
Cf. A001045.
Programs
-
Magma
[1] cat [2*3^(2*n-1): n in [1..20]]; // Vincenzo Librandi, Jun 20 2015
-
Mathematica
Table[EulerPhi[9^n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Nov 10 2009 *)
-
PARI
Vec((1-3*x)/(1-9*x) + O(x^30)) \\ Michel Marcus, Jun 18 2015
Formula
G.f.: (1-3*x)/(1-9*x).
E.g.f.: 2*exp(9*x)/3 + 1/3.
a(n) = 2*9^n/3 + 0^n/3.
a(n) = 2*3^(2*n-1), for n>0. - Gionata Neri, Jun 18 2015
Comments