A092811 Expansion of g.f. (1-4*x)/(1-8*x).
1, 4, 32, 256, 2048, 16384, 131072, 1048576, 8388608, 67108864, 536870912, 4294967296, 34359738368, 274877906944, 2199023255552, 17592186044416, 140737488355328, 1125899906842624, 9007199254740992, 72057594037927936, 576460752303423488, 4611686018427387904
Offset: 0
Examples
From _Adi Dani_, May 28 2011: (Start) a(2)=32: there are 32 compositions of even natural numbers into 2 parts <= 7: (0,0); (0,2),(2,0),(1,1); (0,4),(4,0),(1,3),(3,1),(2,2); (0,6),(6,0),(1,5),(5,1),(2,4),(4,2),(3,3); (1,7),(7,1),(2,6),(6,2),(3,5),(5,3),(4,4); (3,7),(7,3),(4,6),(6,4),(5,5); (5,7),(7,5),(6,6); (7,7). (End)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (8).
Programs
-
Magma
[8^n/2+0^n/2: n in [0..20]]; // Vincenzo Librandi, Jun 16 2011
-
Mathematica
Table[EulerPhi[8^n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Nov 10 2009 *)
-
PARI
a(n)=max(1,8^n/2) \\ Charles R Greathouse IV, Apr 09 2012
-
Python
def A092811(n): return 1<<3*n-1 if n else 1 # Chai Wah Wu, Apr 25 2025
Formula
a(n) = 8^n/2 + 0^n/2.
a(n) = A013731(n-1), n > 0. - R. J. Mathar, Sep 08 2008
a(n) = 4 * 8^(n-1), a(0)=1. - Vincenzo Librandi, Jun 16 2011
a(n) = Sum_{k=0..n} A134309(n,k)*4^k = Sum_{k=0..n} A055372(n,k)*3^k. - Philippe Deléham, Feb 04 2012
E.g.f.: (1 + exp(8*x))/2. - Stefano Spezia, May 29 2024
Comments