cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092886 Expansion of x/(x^4-x^3-2x^2-x+1).

Original entry on oeis.org

0, 1, 1, 3, 6, 12, 26, 53, 111, 231, 480, 1000, 2080, 4329, 9009, 18747, 39014, 81188, 168954, 351597, 731679, 1522639, 3168640, 6594000, 13722240, 28556241, 59426081, 123666803, 257352966, 535556412, 1114503066, 2319302053
Offset: 0

Views

Author

Michael Somos, Mar 11 2004

Keywords

Comments

If P(x),Q(x) are n-th and (n-1)-th Fibonacci polynomials, then a(n)=real part of the product of P(I) and conjugate Q(I).

Examples

			Fibonacci polynomials P(5)=1+4x+3x^2, P(4)=1+3x+x^2. Conjugate product evaluated at I is (-2+4I)*(-3I)=12-6I and so a(5)=12.
		

Programs

  • Mathematica
    CoefficientList[Series[x/(x^4-x^3-2x^2-x+1),{x,0,40}],x] (* or *) LinearRecurrence[{1,2,1,-1},{0,1,1,3},40] (* Harvey P. Dale, Feb 27 2015 *)
  • PARI
    a(n)=local(m);if(n<1,if(n>-3,0,-a(-2-n)),m=contfracpnqn(matrix(2,n,i,j,I));real(m[1,1]*conj(m[2,1])))

Formula

G.f.: x/(x^4-x^3-2x^2-x+1). a(n)=a(n-1)+2*a(n-2)+a(n-3)-a(n-4). a(n)=-a(-2-n).