cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A105309 a(n) = |b(n)|^2 = x^2 + 3*y^2 where (x,y,y,y) is the quaternion b(n) of the sequence b of quaternions defined by b(0)=1,b(1)=1, b(n) = b(n-1) + b(n-2)*(0,c,c,c) where c = 1/sqrt(3).

Original entry on oeis.org

1, 1, 2, 5, 9, 20, 41, 85, 178, 369, 769, 1600, 3329, 6929, 14418, 30005, 62441, 129940, 270409, 562725, 1171042, 2436961, 5071361, 10553600, 21962241, 45703841, 95110562, 197926885, 411889609, 857150100, 1783745641, 3712008565
Offset: 0

Views

Author

Gerald McGarvey, Apr 25 2005

Keywords

Comments

Prepending 0 and keeping the offset at 0, turns this into a divisibility sequence with g.f. x(1-x^2)/(1-x-2x^2-x^3+x^4). - T. D. Noe, Dec 22 2008
Equals INVERT transform of (1, 1, 2, 0, 2, 0, 2, ...). - Gary W. Adamson, Apr 28 2009
Sequence gives the norm of the coefficients in 1/(1 - I*x - I*x^2), where I^2=-1. - Paul D. Hanna, Dec 06 2011
This is the case P1 = 1, P2 = -4, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 27 2014

Examples

			G.f. = 1 + x + 2*x^2 + 5*x^3 + 9*x^4 + 20*x^5 + 41*x^6 + 85*x^7 + 178*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := (ChebyshevT[n + 1, (1 + Sqrt[17])/4] - ChebyshevT[n + 1, (1 - Sqrt[17])/4]) 2 / Sqrt[17] // Simplify; (* Michael Somos, Dec 20 2016 *)
  • PARI
    {a(n) = my(A); n = abs(n+1)-1; if( n<2, n>=0, n++; A = vector(n, i, 1); for(i=3, n, A[i] = A[i-1] + A[i-2]*I); norm(A[n]))}; /* Michael Somos, Apr 28 2005 */
    
  • PARI
    {a(n)=norm(polcoeff(1/(1-I*x-I*x^2+x*O(x^n)), n))} /* Paul D. Hanna */
    
  • PARI
    {a(n)=polcoeff((1-x^2)/(1-x-2*x^2-x^3+x^4)+x*O(x^n),n)}

Formula

a(n) = A092886(n+1) - A092886(n-1), n > 0.
a(n) = A201837(n)^2 + A201838(n)^2. - Paul D. Hanna, Dec 06 2011
From Peter Bala, Mar 27 2014: (Start)
a(n) = ( T(n,alpha) - T(n,beta) )/(alpha - beta), where alpha = (1 + sqrt(17))/4 and beta = (1 - sqrt(17))/4 and T(n,x) denotes the Chebyshev polynomial of the first kind.
a(n) = bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, 1; 1, 1/2].
a(n) = U(n-1,(1 + i)/sqrt(8))*U(n-1,(1 - i)/sqrt(8)), where U(n,x) denotes the Chebyshev polynomial of the second kind.
The o.g.f. is the Chebyshev transform of the rational function x/(1 - x + 4*x^2) = x + x^2 + 5*x^2 + 9*x^4 + 29*x^5 + ... (see A006131), where the Chebyshev transform takes the function A(x) to the function (1 - x^2)/(1 + x^2)*A(x/(1 + x^2)).
See the remarks in A100047 for the general connection between Chebyshev polynomials and 4th-order linear divisibility sequences. (End)
a(n) = abs(((sqrt(4*i - 1) + i)^(n+1) - (i - sqrt(4*i - 1))^(n+1)) / 2^(n+1) / sqrt(4*i - 1))^2. - Daniel Suteu, Dec 20 2016
a(n) = a(-2-n) for all n in Z. - Michael Somos, Dec 20 2016
G.f.: (1+x)*(1-x)/(1-x-2*x^2-x^3+x^4). - R. J. Mathar, Apr 26 2024

A101400 a(n) = a(n-1) + 2*a(n-2) + a(n-3) - a(n-4).

Original entry on oeis.org

1, 2, 5, 10, 21, 44, 91, 190, 395, 822, 1711, 3560, 7409, 15418, 32085, 66770, 138949, 289156, 601739, 1252230, 2605915, 5422958, 11285279, 23484880, 48872481, 101704562, 211649125, 440445850, 916576181, 1907412444, 3969361531
Offset: 0

Views

Author

Jeroen F.J. Laros, Jan 15 2005

Keywords

Comments

Lengths of successive words (starting with a) under the substitution: {a -> ab, b -> aac, c -> d, d -> b}.

Examples

			a(0) = 1, a(1) = 2, a(2) = 5, a(3) = 10, a(4) = 21, a(5) = 44
		

Crossrefs

Programs

  • GAP
    a:=[1,2,5,10];; for n in [5..35] do a[n]:=a[n-1]+2*a[n-2]+a[n-3]-a[n-4]; od; a; # Muniru A Asiru, Apr 03 2018
  • Magma
    I:=[1,2,5,10]; [n le 4 select I[n] else Self(n-1) + 2*Self(n-2) + Self(n-3) - Self(n-4): n in [1..30]]; // G. C. Greubel, Apr 03 2018
    
  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x+x^2)/(1-x-2*x^2-x^3+x^4))); // G. C. Greubel, Apr 03 2018
    
  • Mathematica
    a[0] = 1; a[1] = 2; a[2] = 5; a[3] = 10; a[n_] := a[n] = a[n - 1] + 2a[n - 2] + a[n - 3] - a[n - 4]; Table[ a[n], {n, 0, 30}] (* Robert G. Wilson v, Jan 15 2005 *)
    LinearRecurrence[{1,2,1,-1},{1,2,5,10},40] (* Harvey P. Dale, Oct 24 2017 *)
  • PARI
    x='x+O('x^30); Vec((1+x+x^2)/(1-x-2*x^2-x^3+x^4)) \\ G. C. Greubel, Apr 03 2018
    

Formula

G.f.: (1+x+x^2)/(1-x-2*x^2-x^3+x^4). - G. C. Greubel, Apr 03 2018

Extensions

More terms from Robert G. Wilson v, Jan 15 2005

A119749 Number of compositions of n into odd blocks with one element in each block distinguished.

Original entry on oeis.org

1, 1, 4, 7, 15, 32, 65, 137, 284, 591, 1231, 2560, 5329, 11089, 23076, 48023, 99935, 207968, 432785, 900633, 1874236, 3900319, 8116639, 16890880, 35150241, 73148321, 152223044, 316779047, 659223215, 1371856032, 2854858465
Offset: 1

Views

Author

Louis Shapiro, Jul 30 2006

Keywords

Comments

The sequence is the INVERT transform of the aerated odd integers. - Gary W. Adamson, Feb 02 2014
Number of compositions of n into odd parts where there is 1 sort of part 1, 3 sorts of part 3, 5 sorts of part 5, ... , 2*k-1 sorts of part 2*k-1. - Joerg Arndt, Aug 04 2014

Examples

			a(3) = 4 since Abc, aBc, abC come from one block of size 3 and A/B/C comes from having three blocks. The capital letters are the distinguished elements.
		

Crossrefs

Cf. A105309, A052530, A000045, A030267. Row sums of A292835.

Programs

  • Mathematica
    Rest@ CoefficientList[ Series[x(1 + x^2)/(x^4 - x^3 - 2x^2 - x + 1), {x, 0, 50}], x] (* Robert G. Wilson v *)

Formula

G.f.: (x+x^3)/(x^4 - x^3 -2x^2 -x +1).
a(n) = A092886(n)+A092886(n-2). - R. J. Mathar, Mar 08 2018
Sum_{k=0..n} a(k) = (3*a(n) + 2*a(n-1) - a(n-3))/2 - 1. - Xilin Wang and Greg Dresden, Aug 27 2020

A138269 a(n+1) is the Hankel transform of C(n)+C(n+2), where C(n) = A000108(n).

Original entry on oeis.org

1, 3, 12, 53, 231, 1000, 4329, 18747, 81188, 351597, 1522639, 6594000, 28556241, 123666803, 535556412, 2319302053, 10044062391, 43497219000, 188370799289, 815766130347, 3532789487188, 15299239691997
Offset: 0

Views

Author

Paul Barry, Mar 10 2008

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5,-4,5,-1},{1,3,12,53},30] (* Harvey P. Dale, Dec 04 2022 *)

Formula

G.f.: (1-x)^2/(1-5*x+4*x^2-5*x^3+x^4).
a(n) = Re(P(2n,i)*CONJ(P(2n+1,i))) where i=sqrt(-1) and P(n,x) = Sum_{k=0..floor(n/2)} binomial(n-k,k) x^k.
a(n) = 5*a(n-1)-4*a(n-2)+5*a(n-3)-a(n-4). - Wesley Ivan Hurt, Mar 07 2022
Showing 1-4 of 4 results.