cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093128 Number of dissections of a polygon using strictly disjoint diagonals.

Original entry on oeis.org

1, 1, 3, 6, 13, 29, 65, 148, 341, 793, 1860, 4395, 10452, 24999, 60097, 145130, 351916, 856502, 2091599, 5123437, 12585354, 30995031, 76516348, 189310421, 469335998, 1165790119, 2900870597, 7230320746, 18049387617, 45123390441, 112963369113, 283162526640, 710664478791, 1785645155847, 4491596869206
Offset: 0

Views

Author

David Callan, Mar 23 2004

Keywords

Comments

a(n) is the number of dissections of a regular (n+2)-gon using 0 or more strictly disjoint diagonals.

Examples

			a(3)=6 because there are 5 ways to insert a single diagonal into a pentagon plus the empty dissection.
		

Crossrefs

Row sums of A093127.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( 1 + (1+x)*( 1 -2*x -x^3 - Sqrt((1 -3*x+ x^2)*(1-x)*(1-x^3)) )/(2*x^4) )); // G. C. Greubel, Dec 28 2019
    
  • Maple
    seq(coeff(series(1 + (1+x)*( 1 -2*x -x^3 - sqrt((1 -3*x+ x^2)*(1-x)*(1-x^3)) )/(2*x^4), x, n+2), x, n), n = 0..40); # G. C. Greubel, Dec 28 2019
  • Mathematica
    CoefficientList[Series[1 +(1+x)*(1-2*x-x^3 -Sqrt[(1-3*x+x^2)*(1-x)*(1-x^3)])/( 2*x^4), {x,0,40}], x] (* G. C. Greubel, Dec 28 2019 *)
  • PARI
    {A132461(n)=sum(k=0,n\2,(binomial(n-k, k)+binomial(n-k-1, k-1))^2)}
    {a(n)=polcoeff(exp(sum(m=1,n,A132461(m)*x^m/m)+x*O(x^n)),n)} \\ Paul D. Hanna, Nov 09 2013
    
  • Sage
    def A093128_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1 + (1+x)*( 1 -2*x -x^3 - sqrt((1 -3*x+ x^2)*(1-x)*(1-x^3)) )/(2*x^4) ).list()
    A093128_list(40) # G. C. Greubel, Dec 28 2019

Formula

G.f.: 1 + (1+x)*( 1 -2*x -x^3 - sqrt((1 -3*x+ x^2)*(1-x)*(1-x^3)) )/(2*x^4).
a(n) = A004148(n+2) - A004148(n) for n>=1.
Logarithmic derivative yields A132461. - Paul D. Hanna, Nov 09 2013
G.f.: exp( Sum_{n>=1} A132461(n)*x^n/n ), where A132461(n) = Sum_{k=0..[n/2]} (C(n-k,k) + C(n-k-1,k-1))^2. - Paul D. Hanna, Nov 09 2013

Extensions

Terms a(26) onward added by G. C. Greubel, Dec 28 2019