A093128 Number of dissections of a polygon using strictly disjoint diagonals.
1, 1, 3, 6, 13, 29, 65, 148, 341, 793, 1860, 4395, 10452, 24999, 60097, 145130, 351916, 856502, 2091599, 5123437, 12585354, 30995031, 76516348, 189310421, 469335998, 1165790119, 2900870597, 7230320746, 18049387617, 45123390441, 112963369113, 283162526640, 710664478791, 1785645155847, 4491596869206
Offset: 0
Examples
a(3)=6 because there are 5 ways to insert a single diagonal into a pentagon plus the empty dissection.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Jean-Luc Baril, Sergey Kirgizov, Rémi Maréchal, and Vincent Vajnovszki, Grand Dyck paths with air pockets, arXiv:2211.04914 [math.CO], 2022.
- Samuele Giraudo, Combalgebraic structures on decorated cliques, Formal Power Series and Algebraic Combinatorics, Séminaire Lotharingien de Combinatoire, 78B.15, 2017, p. 8; arXiv:1709.08416 [math.CO], 2017.
- Giovanni Resta, Illustration of a(3)-a(10)
Crossrefs
Row sums of A093127.
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( 1 + (1+x)*( 1 -2*x -x^3 - Sqrt((1 -3*x+ x^2)*(1-x)*(1-x^3)) )/(2*x^4) )); // G. C. Greubel, Dec 28 2019 -
Maple
seq(coeff(series(1 + (1+x)*( 1 -2*x -x^3 - sqrt((1 -3*x+ x^2)*(1-x)*(1-x^3)) )/(2*x^4), x, n+2), x, n), n = 0..40); # G. C. Greubel, Dec 28 2019
-
Mathematica
CoefficientList[Series[1 +(1+x)*(1-2*x-x^3 -Sqrt[(1-3*x+x^2)*(1-x)*(1-x^3)])/( 2*x^4), {x,0,40}], x] (* G. C. Greubel, Dec 28 2019 *)
-
PARI
{A132461(n)=sum(k=0,n\2,(binomial(n-k, k)+binomial(n-k-1, k-1))^2)} {a(n)=polcoeff(exp(sum(m=1,n,A132461(m)*x^m/m)+x*O(x^n)),n)} \\ Paul D. Hanna, Nov 09 2013
-
Sage
def A093128_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( 1 + (1+x)*( 1 -2*x -x^3 - sqrt((1 -3*x+ x^2)*(1-x)*(1-x^3)) )/(2*x^4) ).list() A093128_list(40) # G. C. Greubel, Dec 28 2019
Formula
G.f.: 1 + (1+x)*( 1 -2*x -x^3 - sqrt((1 -3*x+ x^2)*(1-x)*(1-x^3)) )/(2*x^4).
Logarithmic derivative yields A132461. - Paul D. Hanna, Nov 09 2013
G.f.: exp( Sum_{n>=1} A132461(n)*x^n/n ), where A132461(n) = Sum_{k=0..[n/2]} (C(n-k,k) + C(n-k-1,k-1))^2. - Paul D. Hanna, Nov 09 2013
Extensions
Terms a(26) onward added by G. C. Greubel, Dec 28 2019
Comments