cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093129 Binomial transform of Fibonacci(2n-1) (A001519).

Original entry on oeis.org

1, 2, 5, 15, 50, 175, 625, 2250, 8125, 29375, 106250, 384375, 1390625, 5031250, 18203125, 65859375, 238281250, 862109375, 3119140625, 11285156250, 40830078125, 147724609375, 534472656250, 1933740234375, 6996337890625
Offset: 0

Views

Author

Paul Barry, Mar 23 2004

Keywords

Crossrefs

Programs

  • GAP
    a:=[1,2];; for n in [3..30] do a[n]:=5*(a[n-1]-a[n-2]); od; a; # G. C. Greubel, Dec 27 2019
  • Magma
    I:=[1,2]; [n le 2 select I[n] else 5*(Self(n-1) - Self(n-2)): n in [1..30]]; // G. C. Greubel, Dec 27 2019
    
  • Maple
    a:= n-> (<<0|1>, <-5|5>>^n. <<1,2>>)[1,1]:
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 29 2015
  • Mathematica
    LinearRecurrence[{5, -5}, {1, 2}, 25] (* Jean-François Alcover, May 11 2019 *)
    Table[If[EvenQ[n], 5^(n/2)*Fibonacci[n-1], 5^((n-1)/2)*LucasL[n-1]], {n,0,30}] (* G. C. Greubel, Dec 27 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-3*x)/(1-5*x+5*x^2)) \\ G. C. Greubel, Dec 27 2019
    
  • Sage
    [lucas_number2(n,5,5) for n in range(-1,25)] # Zerinvary Lajos, Jul 08 2008
    

Formula

G.f.: (1-3*x)/(1-5*x+5*x^2).
a(n) = (5-sqrt(5))*((5+sqrt(5))/2)^n/10 + (5+sqrt(5))*((5-sqrt(5))/2)^n/10.
a(n) = A093123(n)/2^n.
a(n) = A020876(n-1). - R. J. Mathar, Sep 05 2008
a(n) = A030191(n) - 3*A030191(n-1). - R. J. Mathar, Jun 29 2012
a(2*n) = 5^n*Fibonacci(2*n-1), a(2*n+1) = 5^n*Lucas(2*n). - G. C. Greubel, Dec 27 2019
E.g.f.: (1/10)*exp((1/2)*(5-sqrt(5))*x)*(5 + sqrt(5) + (5 - sqrt(5))*exp(sqrt(5)*x)). - Stefano Spezia, Dec 28 2019