A093173 Primes of the form (2^n * n!) - 1.
7, 47, 383, 10321919, 51011754393599, 1130138339199322632554990773529330319359999999, 73562883979319395645666688474019139929848516028923903999999999, 4208832729023498248022825567687608993477547383960134557368319999999999
Offset: 1
Keywords
Examples
a(1) multiplies the first 2 terms, 2*4-1. a(3) multiplies first 4 terms, a(4) multiplies first 8 terms, a(5) multiplies first 13 terms in 12 multiplications. a(2)=47, formed by 2*4*6 - 1 = 47.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..12
Programs
-
Mathematica
lst={};Do[If[PrimeQ[p=(2^n*n!)-1],AppendTo[lst,p]],{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 28 2009 *)
-
PARI
v=[];for(n=1,404,if(ispseudoprime(t=n!<
Charles R Greathouse IV, Feb 14 2011
Formula
Starting with 2, multiply even numbers until the product, minus 1, equals a prime.
a(n) = A117141(n+1). - Alexander Adamchuk, Apr 18 2007
Extensions
More terms from Ray Chandler, Mar 27 2004
a(8) from Robert Price, Mar 13 2015
Comments