cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A117141 Primes of the form n!! - 1.

Original entry on oeis.org

2, 7, 47, 383, 10321919, 51011754393599, 1130138339199322632554990773529330319359999999, 73562883979319395645666688474019139929848516028923903999999999, 4208832729023498248022825567687608993477547383960134557368319999999999
Offset: 1

Views

Author

Keywords

Examples

			6!! - 1 = 6*4*2 - 1 = 48 - 1 = 47, which is prime.
8!! - 1 = 8*6*4*2 - 1 = 384 - 1 = 383, which is prime.
		

References

  • G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 158.

Crossrefs

Cf. A093173 = primes of the form (2^n * n!) - 1.

Programs

  • Maple
    SFACT:= proc(n) local i,j,k; for k from 1 by 1 to n do i:=k; j:=k-2; while j >0 do i:=i*j; j:=j-2; od: if isprime(i-1) then print(i-1); fi; od: end: SFACT(100);
  • Mathematica
    lst={};Do[p=n!!-1;If[PrimeQ[p],AppendTo[lst,p]],{n,0,5!,1}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 27 2009 *)
    Select[Table[n!!-1,{n,1,100}],PrimeQ] (* Vincenzo Librandi, Dec 07 2011 *)
  • PARI
    print1(2);for(n=1, 1e3, if(ispseudoprime(t=n!<Charles R Greathouse IV, Jun 16 2011

Formula

a(n) = A093173(n-1) for n > 1. - Alexander Adamchuk, Apr 18 2007
a(n) = A006882(A007749(n)) - 1. - Elmo R. Oliveira, Feb 22 2025

A091415 Numbers n such that n!*2^n - 1 is prime.

Original entry on oeis.org

2, 3, 4, 8, 13, 32, 41, 45, 59, 97, 107, 364, 421, 444, 1164, 1663, 3202, 4335, 4841, 13528, 22159, 38095, 50327, 72853
Offset: 1

Views

Author

Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 02 2004

Keywords

Examples

			a(1)=2 because 2!*2^2 - 1 = 7 is prime
a(2)=3 because 3!*2^3 - 1 = 47 is prime
		

Crossrefs

A093173 gives the corresponding primes.

Programs

  • Mathematica
    For[n=1, n<1000,n++, If[PrimeQ[2^n*n!-1], Print[n]]] (Steinerberger)
  • PARI
    f(n)=n!*2^n -1; for (i=1,363,if(isprime(f(i)),print(i)))

Formula

a(n) = A007749(n+1)/2. - Alexander Adamchuk, Sep 23 2006

Extensions

a(12)-a(14) from Stefan Steinerberger, Feb 05 2006
a(15) from Mohammed Bouayoun (Mohammed.Bouayoun(AT)yahoo.fr), Apr 13 2006
More terms from Alexander Adamchuk, Sep 23 2006
Corrected and extended by Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 03 2008
Terms a(22)..a(24) (using A007749) from Joerg Arndt, Apr 22 2016

A128882 a(n) = n!! - 1.

Original entry on oeis.org

0, 0, 1, 2, 7, 14, 47, 104, 383, 944, 3839, 10394, 46079, 135134, 645119, 2027024, 10321919, 34459424, 185794559, 654729074, 3715891199, 13749310574, 81749606399, 316234143224, 1961990553599, 7905853580624, 51011754393599
Offset: 0

Views

Author

Alexander Adamchuk, Apr 18 2007

Keywords

Comments

n divides a(n-1) and a(n+1) for n = {1, 2, 8, 11, 16, 19, 23, 31, 32, 43, 64, 67, 71, ...} which include all powers of 2 except 2^2 and some odd primes of the form 4k+3 belonging to A002145.
p^2 divides a(p-1) for odd prime p = 71.
p^2 divides a(p+1) for odd prime p = 23.
a(n) is prime for n = {3, 4, 6, 8, 16, 26, 64, 82, 90, 118, 194, 214, ...} = A007749; A007749(n) = 2*A091415(n-1) for n > 1. Corresponding primes of the form n!! - 1 are listed in A117141, cf. also A093173.

Crossrefs

Programs

  • Mathematica
    Table[ n!! - 1, {n,0,35} ]

Formula

a(n) = A006882(n) - 1.
Showing 1-3 of 3 results.