A092075 Duplicate of A091415.
2, 3, 4, 8, 13, 32, 41, 45, 59, 97, 107, 364, 421, 444, 1164
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
select(t -> isprime(doublefactorial(t)-1), [3, seq(n,n=4..3000,2)]); # Robert Israel, Apr 21 2016
a(1) = 3, for n>1 k=2;f=2;Do[k=k+2;f=f*k;If[PrimeQ[f-1],Print[k]],{n,2,5000}] (* Alexander Adamchuk, Nov 19 2006 *) Select[Range[45000],PrimeQ[#!!-1]&] (* Harvey P. Dale, Aug 07 2013 *)
print1(3);for(n=2, 1e3, if(ispseudoprime(n!<Charles R Greathouse IV, Jun 16 2011
Do[f=n!*3^n-1;If[PrimeQ[f],Print[{n,f}]],{n,1,25000}]
Table[ n!! - 1, {n,0,35} ]
0 is in the sequence since 0!*2^0 + 1 = 2 is prime.
[n: n in [0..3*10^2] | IsPrime(Factorial(n)*2^n+1)]; // Vincenzo Librandi, Apr 05 2015
Select[Range[0, 20000], PrimeQ[2^#*#! + 1] &]
for(n=0,300,if(ispseudoprime(n!*2^n+1),print1(n,", "))) \\ Derek Orr, Apr 05 2015
from sympy import factorial, isprime for n in range(0,300): if isprime(factorial(n)*(2**n)+1): print(n, end=', ') # Stefano Spezia, Dec 06 2018
Do[f=n!*3^n+1;If[PrimeQ[f],Print[{n,f}]],{n,0,25000}]
isok(n) = isprime(n!*3^n + 1); \\ Michel Marcus, Jul 23 2017
Select[Prime[Range[651]],PrimeQ[(2#)!!-1]&]
Comments