cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A271476 Total number of burnt pancakes flipped using the Min-bar(n) greedy algorithm.

Original entry on oeis.org

1, 10, 75, 628, 6325, 75966, 1063615, 17017960, 306323433, 6126468850, 134782314931, 3234775558620, 84104164524445, 2354916606684838, 70647498200545575, 2260719942417458896, 76864478042193603025, 2767121209518969709530, 105150605961720848962843, 4206024238468833958514500
Offset: 1

Views

Author

N. J. A. Sloane, Apr 09 2016

Keywords

Crossrefs

Programs

  • GAP
    List([1..20],n->-n+2^n*Factorial(n)*Sum([0..n-1],k->1/(2^k*Factorial(k)))); # Muniru A Asiru, Aug 02 2018
  • Maple
    seq(coeff(series(factorial(n)*exp(x)*(x+2*x^2)/(1-2*x), x,n+1),x,n),n=1..20); # Muniru A Asiru, Aug 02 2018
  • Mathematica
    Table[2^n*n! Sum[1/(2^k*k!), {k, 0, n - 1}] - n, {n, 20}] (* Michael De Vlieger, May 25 2016 *)
  • PARI
    a(n) = 2^n * n! * sum(k=0, n-1, 1/(2^k*k!)) - n;
    vector(20, n, a(n))  \\ Gheorghe Coserea, Apr 25 2016
    
  • PARI
    x='x+O('x^99); Vec(serlaplace((x+2*x^2)/(1-2*x)*exp(x))) \\ Altug Alkan, Aug 01 2018
    

Formula

a(n) = -n + 2^n * n! * Sum_{k=0..n-1} 1/(2^k*k!). (see Sawada link) - Gheorghe Coserea, Apr 25 2016
From Altug Alkan, Aug 01 2018: (Start)
a(n) = A093302(n)/2 for n >= 1.
a(n) = floor(e^(1/2)*n!*2^n)-n-1.
E.g.f.: exp(x)*(x+2*x^2)/(1-2*x). (End)

Extensions

More terms from Gheorghe Coserea, Apr 25 2016

A339516 a(n+1) = (a(n) - 2*(n-1)) * (2*n-1), where a(1)=1.

Original entry on oeis.org

1, 1, -3, -35, -287, -2655, -29315, -381251, -5718975, -97222847, -1847234435, -38791923555, -892214242271, -22305356057375, -602244613549827, -17465093792945795, -541417907581320575, -17866790950183580031, -625337683256425302275, -23137494280487736185507
Offset: 1

Views

Author

Kamil Zabkiewicz, Dec 07 2020

Keywords

Comments

The sequence appears when computing constants that encode all odd numbers starting from 3, then from 5, then from 7, etc. The general formula of the constant is a(n) + (2n-1)!!*sqrt(2*Pi*e)*erf(1/sqrt(2)), where n>0. For more information on how to generate the constant please watch the Grime-Haran Numberphile video.

Crossrefs

Programs

  • Maple
    A339516 := proc(n)
        option remember ;
        if n = 1 then
            1;
        else
            (2*n-3)*(procname(n-1)-2*(n-2)) ;
        end if;
    end proc:
    seq(A339516(n),n=1..30) ; # R. J. Mathar, Aug 24 2022
  • Mathematica
    a[1]=1;a[n_]:=(a[n-1]-2(n-2))(2n-3); Array[a,20] (* Stefano Spezia, Dec 08 2020 *)
    nxt[{n_,a_}]:={n+1,(a-2n)(2n+1)}; Join[{1},NestList[nxt,{1,1},20][[;;,2]]] (* Harvey P. Dale, Aug 25 2024 *)
  • Python
    #generate first 50 numbers of the sequence
    cnt = 50
    i=0
    seq = list()
    seq.append(1)
    i=1
    while (i
    				

Formula

Homogeneous recurrence: (-2*n+9)*a(n-4) + (6*n-20)*a(n-3) + (-6*n+12)*a(n-2) + 2*n*a(n-1) - a(n) = 0 with a(1)=a(2)=1, a(3)=-3, a(4)=-35. - Georg Fischer, Sep 01 2022
Showing 1-2 of 2 results.