cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A062457 a(n) = prime(n)^n.

Original entry on oeis.org

2, 9, 125, 2401, 161051, 4826809, 410338673, 16983563041, 1801152661463, 420707233300201, 25408476896404831, 6582952005840035281, 925103102315013629321, 73885357344138503765449, 12063348350820368238715343, 3876269050118516845397872321
Offset: 1

Views

Author

Labos Elemer, Jul 09 2001

Keywords

Comments

Heinz numbers of square integer partitions, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). - Gus Wiseman, Apr 14 2018
Main diagonal of A182944. - Omar E. Pol, Sep 12 2018
Second diagonal of A319075. - Omar E. Pol, Sep 13 2018

Crossrefs

Programs

Formula

a(n) = A062006(n) - 1. - Wesley Ivan Hurt, Jan 18 2016
From Amiram Eldar, Nov 16 2020: (Start)
Sum_{n>=1} 1/a(n) = A093358.
Sum_{n>=1} (-1)^(n+1)/a(n) = A201614. (End)

A201614 Decimal expansion of Sum_{n = 1 .. infinity } (-1)^(n+1)/ prime(n)^n.

Original entry on oeis.org

3, 9, 6, 4, 7, 8, 4, 0, 0, 1, 7, 6, 7, 2, 8, 8, 0, 1, 3, 2, 0, 3, 7, 7, 2, 1, 9, 5, 4, 9, 1, 4, 5, 0, 1, 3, 1, 1, 7, 8, 3, 7, 6, 1, 4, 2, 2, 1, 9, 0, 4, 1, 8, 5, 1, 5, 8, 6, 6, 3, 8, 8, 9, 5, 4, 4, 0, 1, 0, 8, 7, 8, 0, 8, 5, 0, 8, 7, 7, 9, 9, 7, 0, 3, 9, 5, 5, 5, 9, 1, 1, 1, 0, 5, 2, 9, 9, 2, 9, 0, 2, 5, 5, 9, 8
Offset: 0

Views

Author

Michel Lagneau, Dec 03 2011

Keywords

Examples

			0.39647840017672880132037721... = 1/2^1 - 1/3^2 + 1/5^3 - 1/7^4 + ...
		

Crossrefs

Programs

  • Maple
    with(numtheory): Digits:=105:s:=sum( evalf(((-1)^(n+1))/ ithprime(n)^n),n=1..200):print(s):
  • Mathematica
    digits = 105; NSum[(-1)^(n+1)/Prime[n//Round]^n, {n, 1, Infinity},  Method -> "AlternatingSigns", WorkingPrecision -> digits, NSumTerms -> digits] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 24 2014 *)
Showing 1-2 of 2 results.