A319075
Square array T(n,k) read by antidiagonal upwards in which row n lists the n-th powers of primes, hence column k lists the powers of the k-th prime, n >= 0, k >= 1.
Original entry on oeis.org
1, 2, 1, 4, 3, 1, 8, 9, 5, 1, 16, 27, 25, 7, 1, 32, 81, 125, 49, 11, 1, 64, 243, 625, 343, 121, 13, 1, 128, 729, 3125, 2401, 1331, 169, 17, 1, 256, 2187, 15625, 16807, 14641, 2197, 289, 19, 1, 512, 6561, 78125, 117649, 161051, 28561, 4913, 361, 23, 1, 1024, 19683, 390625, 823543, 1771561, 371293
Offset: 0
The corner of the square array is as follows:
A000079 A000244 A000351 A000420 A001020 A001022 A001026
A000012 1, 1, 1, 1, 1, 1, 1, ...
A000040 2, 3, 5, 7, 11, 13, 17, ...
A001248 4, 9, 25, 49, 121, 169, 289, ...
A030078 8, 27, 125, 343, 1331, 2197, 4913, ...
A030514 16, 81, 625, 2401, 14641, 28561, 83521, ...
A050997 32, 243, 3125, 16807, 161051, 371293, 1419857, ...
A030516 64, 729, 15625, 117649, 1771561, 4826809, 24137569, ...
A092759 128, 2187, 78125, 823543, 19487171, 62748517, 410338673, ...
A179645 256, 6561, 390625, 5764801, 214358881, 815730721, 6975757441, ...
...
Rows 0-13:
A000012,
A000040,
A001248,
A030078,
A030514,
A050997,
A030516,
A092759,
A179645,
A179665,
A030629,
A079395,
A030631,
A138031.
Other rows n:
A030635 (n=16),
A030637 (n=18),
A137486 (n=22),
A137492 (n=28),
A139571 (n=30),
A139572 (n=36),
A139573 (n=40),
A139574 (n=42),
A139575 (n=46),
A173533 (n=52),
A183062 (n=58),
A183085 (n=60),
A261700 (n=100).
Columns 1-15:
A000079,
A000244,
A000351,
A000420,
A001020,
A001022,
A001026,
A001029,
A009967,
A009973,
A009975,
A009981,
A009985,
A009987,
A009991.
A197987
a(n) = prime(n)^(n+1).
Original entry on oeis.org
4, 27, 625, 16807, 1771561, 62748517, 6975757441, 322687697779, 41426511213649, 12200509765705829, 787662783788549761, 243569224216081305397, 37929227194915558802161, 3177070365797955661914307, 566977372488557307219621121, 205442259656281392806087233013
Offset: 1
The fourth prime number is 7, so a(4) = 7^(4+1) = 7^5 = 16807. - _Omar E. Pol_, Oct 20 2011
-
[NthPrime(n)^(n+1): n in [1..16]];
-
Table[Prime[n]^(n+1),{n,20}] (* Harvey P. Dale, Dec 16 2012 *)
-
for(n=1, 16, print1(prime(n)^(n+1)", "));
A135485
a(n) = Sum_{i=1..n} prime(i)^(i-1), where prime(i) denotes i-th prime number.
Original entry on oeis.org
1, 4, 29, 372, 15013, 386306, 24523875, 918395614, 79229380895, 14586375356764, 834214662337565, 178751836441797978, 22742242136807984059, 1741006366419098769302, 258407992554086508103671
Offset: 1
-
f[n_] := Sum[Prime[i]^(i - 1), {i, n}]; Array[f, 16] (* Robert G. Wilson v, Feb 12 2008 *)
-
a(n) = sum(k=1, n, prime(k)^(k-1)); \\ Michel Marcus, Oct 15 2016
A319074
a(n) is the sum of the first n nonnegative powers of the n-th prime.
Original entry on oeis.org
1, 4, 31, 400, 16105, 402234, 25646167, 943531280, 81870575521, 15025258332150, 846949229880161, 182859777940000980, 23127577557875340733, 1759175174860440565844, 262246703278703657363377, 74543635579202247026882160, 21930887362370823132822661921, 2279217547342466764922495586798
Offset: 1
For n = 4 the 4th prime is 7 and the sum of the first four nonnegative powers of 7 is 7^0 + 7^1 + 7^2 + 7^3 = 1 + 7 + 49 + 343 = 400, so a(4) = 400.
Cf.
A000079,
A000244,
A000351,
A000420,
A001020,
A001022,
A001026,
A001029,
A009967,
A009973,
A009975,
A009981,
A009985,
A009987,
A009991.
Cf.
A126646,
A003462,
A003463,
A023000,
A016123,
A091030,
A091045,
A218722,
A218726,
A218732,
A218734,
A218740,
A218744,
A218746,
A218750.
A130606
a(n) = prime(n+1)^n - prime(n)^n where prime(n) is the n-th prime number.
Original entry on oeis.org
1, 16, 218, 12240, 210242, 19310760, 483533066, 61327422240, 12705993314406, 398921053680600, 152509144883055582, 15980538294526150800, 793161021967277155922, 182781628843528905568920, 61073803538208251485772814
Offset: 1
For n=2, prime(2+1)^2 - prime(2)^2 = 5^2 - 3^2 = 4^2, the second entry.
-
a := proc (n) options operator, arrow; ithprime(n+1)^n-ithprime(n)^n end proc: seq(a(n), n = 1 .. 15); # Emeric Deutsch, Jul 09 2007
-
n[x_]:=Module[{pn=Prime[x]},(NextPrime[pn])^x-pn^x]; n/@Range[20] (* Harvey P. Dale, Apr 11 2011 *)
-
g1(n) = for(x=1,n,y=prime(x+1)^x-prime(x)^x;print1(y","))
A130607
a(n) = prime(n+1)^n + prime(n)^n.
Original entry on oeis.org
5, 34, 468, 17042, 532344, 28964378, 1304210412, 95294548322, 16308298637332, 1240335520281002, 203326098675865244, 29146442306206221362, 2643367226597304414564, 330552343531805913099818, 85200500239848987963203500, 25435446457194919247155743362, 3513844792272393084250431362040
Offset: 1
For n=2, prime(2+1)^2 - prime(2)^2 = 5^2 + 3^2 = 34, the second term.
-
Table[Prime[n+1]^n + Prime[n]^n, {n, 1, 20}] (* Amiram Eldar, Jun 30 2024 *)
-
g2(n) = for(x=1,n,y=prime(x+1)^x+prime(x)^x;print1(y","))
Showing 1-6 of 6 results.
Comments