A081368
Next n digits of e, base of the natural logarithms.
Original entry on oeis.org
2, 71, 828, 1828, 45904, 5235360, 2874713, 52662497, 757247093, 6999595749, 66967627724, 76630353547, 5945713821785, 25166427427466, 391932003059921, 8174135966290435, 72900334295260595, 630738132328627943
Offset: 1
a(2) = 71 because the second and third digits of e are 7 and 1.
- M. J. Halm, More Sequences, Mpossibilities 83, April 2003.
- C. A. Pickover, Wonders of Numbers, p. 302
- C. Pickover, Mazes for the Mind, St. Martin's Press, NY, 1992, p. 350.
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 65.
A267325
Next n digits of sqrt(2).
Original entry on oeis.org
1, 41, 421, 3562, 37309, 504880, 1688724, 20969807, 856967187, 5376948073, 17667973799, 73247846210, 7038850387534, 32764157273501, 384623091229702, 4924836055850737, 21264412149709993, 583141322266592750, 5592755799950501152, 78206057147010955997
Offset: 1
a(2) = 41 because the second and third digits of sqrt(2) are 4 and 1.
-
[Floor(Sqrt(2)*10^(n*(n + 1)/2 - 1)) mod (10^n): n in [1..30]]; // Vincenzo Librandi, Feb 15 2016
-
Table[Mod[Floor[Sqrt[2] 10^(n ((n + 1)/2) - 1)], 10^n], {n, 1, 20}]
Table[Floor[10^(-1 + (n (1 + n))/2) Sqrt[2]] + Ceiling[-(Floor[10^(-1 + (n (1 + n))/2) Sqrt[2]]/10^n)] 10^n, {n, 1, 20}]
With[{x=20},FromDigits/@TakeList[RealDigits[Sqrt[2],10,(x(x+1))/2] [[1]], Range[x]]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 04 2019 *)
-
a(n) = lift(Mod(floor(sqrt(2)*10^(n*(n + 1)/2 - 1)), 10^n)); \\ G. C. Greubel, Oct 07 2018
Showing 1-2 of 2 results.
Comments