A074271
Previous term + prime(previous term).
Original entry on oeis.org
1, 3, 8, 27, 130, 863, 7554, 84385, 1165814, 19408513, 381328184, 8690396907, 226500350374, 6671888768963, 219904832427160, 8040978338951561, 323784549401655250, 14264968083112608087
Offset: 1
a(4)=27 because a(3)=8, prime(8)=19 and 8+19=27.
-
se={1}; a=1; Do[b=a+Prime[a]; se=Append[se, b]; a=b, {i, 13}]; se
NestList[ Prime@# + # &, 1, 14] (* Robert G. Wilson v, Jul 17 2010 *)
A376406
a(0) = 1, and for n > 0, a(n) = A019565(Sum_{i=0..n-1} a(i)), where A019565 is the base-2 exp-function.
Original entry on oeis.org
1, 2, 6, 14, 330, 10166, 12075690, 1174153011328084322, 73582975079922326904310062621361286633125176265747127754
Offset: 0
Starting with a(0) = 1, we take partial sums of previous terms, and apply A019565 to get the next term, and in the rightmost column, we "unbox" that term by applying A048675 to get A376407(n), which thus gives the partial sums of a(0)..a(n-1):
a(0) = 1 -> 0
a(1) = A019565(1) = 2, -> 1 = 1
a(2) = A019565(1+2) = 6, -> 3 = 1+2
a(3) = A019565(1+2+6) = 14, -> 9 = 1+2+6
a(4) = A019565(1+2+6+14) = 330, -> 23 = 1+2+6+14
a(5) = A019565(1+2+6+14+330) = 10166, -> 353 = 1+2+6+14+330
a(6) = A019565(1+2+6+14+330+10166) = 12075690, -> 10519 = 1+2+6+14+330+10166
etc.
Cf.
A376407 (=
A048675(a(n)), also gives the partial sums from its second term onward).
-
up_to = 12;
A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
A376406list(up_to) = { my(v=vector(up_to), s=1); v[1]=1; for(n=2,up_to,v[n] = A019565(s); s += v[n]); (v); };
v376406 = A376406list(1+up_to);
A376406(n) = v376406[1+n];
A376399
a(0) = 1, and for n > 0, a(n) is the least k such that A276075(k) = a(n-1) + A276075(a(n-1)), where A276075 is the factorial base log-function.
Original entry on oeis.org
1, 2, 6, 30, 1050, 519090, 1466909163669353522118
Offset: 0
Starting with a(0) = 1, we take partial sums of previous terms, and apply A276076 to get the next term as:
a(1) = A276076(1) = 2,
a(2) = A276076(1+2) = 6,
a(3) = A276076(1+2+6) = 30,
a(4) = A276076(1+2+6+30) = 1050,
a(5) = A276076(1+2+6+30+1050) = 519090,
a(6) = A276076(1+2+6+30+1050+519090) = 1466909163669353522118,
etc.
Cf.
A376403 (=
A276075(a(n)), also gives the partial sums from its second term onward).
-
\\ Do it hard way, by searching:
up_to = 12;
A276075(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*(primepi(f[k, 1])!)); };
A376399list(up_to) = { my(v=vector(up_to), x); v[1]=1; for(n=2,up_to,x=v[n-1]+A276075(v[n-1]); for(k=1,oo,if(A276075(k)==x,v[n]=k;break)); print1(v[n], ", ")); (v); };
v376399 = A376399list(1+up_to);
A376399(n) = v376399[1+n];
-
\\ Compute, do not search, much faster:
up_to = 8;
A276076(n) = { my(m=1, p=2, i=2); while(n, m *= (p^(n%i)); n = n\i; p = nextprime(1+p); i++); (m); };
A376399list(up_to) = { my(v=vector(up_to), s=1); v[1]=1; for(n=2,up_to,v[n] = A276076(s); s += v[n]); (v); };
v376399 = A376399list(1+up_to);
A376399(n) = v376399[1+n];
A363655
a(0) = 1; for n > 0, a(n) = prime( Sum_{k=0..n-1} a(k) * a(n-k-1) ).
Original entry on oeis.org
1, 2, 7, 61, 863, 17569, 472741, 16007419, 659408567, 32231133931, 1833425773489, 119498316410171, 8810846732918257, 727089137774221667
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Prime[Sum[a[k] a[n - k - 1], {k, 0, n - 1}]]; Table[a[n], {n, 0, 11}]
Showing 1-4 of 4 results.
Comments