cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A127263 Numbers k such that k^3 divides 2^(k^2)+1.

Original entry on oeis.org

1, 3, 57, 32547, 9961491, 297381939, 1338104811, 3942759027, 5688011361, 8920514307, 9146532873, 40253706489, 243640690617, 764039295291, 1127102902923, 1556475424971, 2251315404417, 3005607686883, 5222670270483
Offset: 1

Views

Author

Max Alekseyev, Mar 27 2007, Mar 29 2007, Apr 18 2007

Keywords

Comments

If k belongs to this sequence, then so does (2^(k^2)+1)/k^2.
From Alexander Adamchuk, May 14 2010: (Start)
3 divides a(n) for n>1.
19 divides a(n) for n>2. (End)

Crossrefs

Programs

  • Mathematica
    Select[Range[100000], Divisible[2^(#^2) + 1, #^3] &] (* Robert Price, Mar 23 2020 *)

Extensions

a(7) from Ryan Propper, Jan 01 2008
a(8)-a(19) from Max Alekseyev, May 14 2010

A093547 Numbers k such that k divides 3^(k^2) - 1.

Original entry on oeis.org

1, 2, 4, 8, 10, 16, 20, 32, 40, 50, 64, 68, 80, 100, 110, 128, 136, 160, 164, 200, 220, 250, 256, 272, 320, 328, 340, 400, 440, 500, 512, 544, 550, 610, 640, 656, 680, 772, 800, 820, 880, 1000, 1010, 1024, 1088, 1100, 1156, 1210, 1220, 1250, 1280, 1312, 1360
Offset: 1

Views

Author

Farideh Firoozbakht, Mar 31 2004

Keywords

Comments

This sequence is closed under multiplication, i.e., if x and y are terms then so is x*y.
A067945 is a subsequence of this sequence. A067945 is also closed under multiplication. In fact if m is an integer and k is a natural number then the sequence " n divides m^(n^k) - 1 " is a subsequence of the sequence " n divides m^n^(k+1)- 1 " and both are closed under multiplication.

Crossrefs

Programs

  • Mathematica
    v={};Do[If[IntegerQ[(3^n^2-1)/n], v=Append[v, n];Print[v]], {n, 2500}]
    Select[Range[1400],Divisible[3^#^2-1,#]&] (* Harvey P. Dale, Nov 04 2015 *)
  • PARI
    isok(k) = Mod(3, k)^(k^2) == 1; \\ Amiram Eldar, May 26 2024

A092408 Numbers k that divide 3^(k^3) + 1.

Original entry on oeis.org

1, 2, 34, 386, 578, 6562, 9826, 74498, 111554, 167042, 1100546, 1192354, 1266466, 1896418, 2839714, 14378114, 18709282, 20270018, 21529922, 32239106, 35759426, 48275138, 191812802, 212405378, 230124322, 244427938, 318057794, 344590306
Offset: 1

Views

Author

Robert G. Wilson v, Apr 02 2004

Keywords

Comments

It appears that all numbers of the form 2*17^m are present.

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 350000000], PowerMod[3, #^3, # ] +1 == # &]

A093665 Numbers k that divide 2^(k^3) + 1.

Original entry on oeis.org

1, 3, 9, 27, 57, 81, 171, 243, 513, 729, 1083, 1467, 1539, 2187, 3249, 4401, 4617, 6561, 9747, 13131, 13203, 13851, 19683, 20577, 27873, 29241, 32547, 39393, 39609, 41553, 59049, 61731, 83619, 87723, 97641, 118179, 118827, 124659, 177147, 185193
Offset: 1

Views

Author

Robert G. Wilson v, Apr 03 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 249488], PowerMod[2, #^3, # ] == # - 1 &]

A093666 Numbers n such that n | 3^n^2 + 1.

Original entry on oeis.org

1, 2, 82, 3362, 137842, 188354, 5651522, 7722514, 13232914, 231712402, 316623074, 432649138, 542549474, 1196468642, 2650762258, 9500208482, 12981546034, 17738614658, 22244528434, 30396003458, 49055214322, 108681252578, 389508547762, 532243387394, 727283200978, 912025665794, 993795069986
Offset: 1

Views

Author

Robert G. Wilson v, Apr 02 2004

Keywords

Comments

If n is a term and p is its odd prime divisor, then p*n is also a term. In particular, the sequence contains 2*41^k and 2*41*2297^k for all k>=1.

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 250000000], PowerMod[3, #^2, # ] +1 == # & ]

Extensions

Terms a(11) onward from Max Alekseyev, Feb 13 2012
Showing 1-5 of 5 results.