cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093567 Binomial (Binomial (n,2), 3) - Binomial (Binomial (n,3), 2).

Original entry on oeis.org

0, 1, 14, 75, 265, 735, 1736, 3654, 7050, 12705, 21670, 35321, 55419, 84175, 124320, 179180, 252756, 349809, 475950, 637735, 842765, 1099791, 1418824, 1811250, 2289950, 2869425, 3565926, 4397589, 5384575, 6549215, 7916160, 9512536
Offset: 2

Views

Author

Keywords

Comments

All terms are positive: A093566 >= A054563 ==> C( C(n,2), 3) >= C( C(n,3), 2) ==> n^2*(n^4 + 3n^3 -35n^2 + 69n -38)/144 >= 0 ==> (n - 2)(n - 1)(n^2 + 6n - 19) ==> 0 which it is for all n >= 2.

Crossrefs

Programs

  • Maple
    A093567:=n->binomial(binomial(n, 2), 3) - binomial(binomial(n, 3), 2); seq(A093567(n), n=2..30); # Wesley Ivan Hurt, Feb 02 2014
  • Mathematica
    Table[ Binomial[ Binomial[n, 2], 3] - Binomial[ Binomial[n, 3], 2], {n, 2, 34}]
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,1,14,75,265,735,1736},40] (* Harvey P. Dale, Jun 12 2016 *)
  • PARI
    a(n) = binomial(binomial(n,2), 3) - binomial(binomial(n,3), 2); \\ Michel Marcus, Oct 01 2017

Formula

a(n) = A093566(n) - A054563(n).
G.f.: x^3*(-1-7*x+2*x^2+x^3)/(x-1)^7. - R. J. Mathar, Dec 08 2010