Original entry on oeis.org
1, 1, 2, 7, 23, 92, 368, 1573, 6687, 29961, 133258, 612277, 2801021, 13118117, 61169118, 290680439, 1374997022, 6603579274, 31604621290, 153080685045, 739012183165, 3605324123927, 17533159420196, 86021715284351
Offset: 0
A093637
G.f.: A(x) = Product_{n>=0} 1/(1 - a(n)*x^(n+1)) = Sum_{n>=0} a(n)*x^n.
Original entry on oeis.org
1, 1, 2, 4, 9, 20, 49, 117, 297, 746, 1947, 5021, 13378, 35237, 95123, 254825, 694987, 1882707, 5184391, 14177587, 39289183, 108337723, 301997384, 837774846, 2347293253, 6546903307, 18417850843, 51617715836, 145722478875, 409964137081, 1161300892672
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 20*x^5 + 49*x^6 +...
where
A(x) = 1/((1-x)*(1-x^2)*(1-2*x^3)*(1-4*x^4)*(1-9*x^5)*(1-20*x^6)*(1-49*x^7)...).
-
b:= proc(n, i) option remember; `if`(i>n, 0,
a(i-1)*`if`(i=n, 1, b(n-i, i)))+`if`(i>1, b(n, i-1), 0)
end:
a:= n-> `if`(n=0, 1, b(n, n)):
seq(a(n), n=0..40); # Alois P. Heinz, Jul 20 2012
-
b[n_, i_] := b[n, i] = If[i>n, 0, a[i-1]*If[i == n, 1, b[n-i, i]]] + If[i>1, b[n, i-1], 0]; a[n_] := If[n == 0, 1, b[n, n]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jun 15 2015, after Alois P. Heinz *)
-
{a(n) = polcoeff(prod(i=0,n-1,1/(1-a(i)*x^(i+1)))+x*O(x^n),n)}
for(n=0,25,print1(a(n),", "))
-
{a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1,n,1/m*sum(k=1,n, polcoeff(A+O(x^k), k-1)^m*x^(m*k)) +x*O(x^n))));polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
A203508
G.f.: Product_{n>=0} (1+a(n)*x^(n+1))^3 = Sum_{n>=0} a(n)*x^n.
Original entry on oeis.org
1, 3, 12, 64, 354, 2160, 13518, 88374, 584409, 3980736, 27291825, 190771995, 1339606882, 9539905173, 68140709607, 492072701284, 3560322659379, 25984705308156, 189940383845883, 1398103463338725, 10302144982761213, 76363018655732307, 566463003067056519
Offset: 0
G.f.: A(x) = 1 + 3*x + 12*x^2 + 64*x^3 + 354*x^4 + 2160*x^5 + 13518*x^6 +...
where
A(x) = ((1+x)*(1+3*x^2)*(1+12*x^3)*(1+64*x^4)*(1+354*x^5)*...)^3.
Related expansion:
A(x)^(1/3) = 1 + x + 3*x^2 + 15*x^3 + 76*x^4 + 454*x^5 + 2742*x^6 +...
-
A:= proc(n) option remember; local i, p, q; if n=0 then 1 else
p, q:= A(n-1), 1; for i from 0 to n-1 do q:= convert(
series(q*(1+coeff(p, x, i)*x^(i+1))^3, x, n+1), polynom)
od: q fi
end:
a:= n-> coeff(A(n), x, n):
seq(a(n), n=0..30); # Alois P. Heinz, Aug 01 2013
-
a[n_] := a[n] = SeriesCoefficient[Product[(1+a[k] x^(k+1))^3, {k, 0, n-1}], {x, 0, n}];
a /@ Range[0, 30] (* Jean-François Alcover, Nov 20 2020 *)
-
{a(n) = polcoeff(prod(k=0, n-1, (1+a(k)*x^(k+1)+x*O(x^n)))^3, n)}
Showing 1-3 of 3 results.
Comments